Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions

Changes in the operating environment of transition-edge sensor (TES) microcalorimeters can cause variations in the detector gain function over time. If not corrected, this can degrade the spectral resolution, and cause systematic errors in the knowledge of the absolute energy. The non-linear nature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2023-08, Vol.33 (5), p.1-6
Hauptverfasser: Smith, Stephen J., Witthoeft, Michael C., Adams, Joseph S., Bandler, Simon R., Beaumont, Sophie, Chervenak, James A., Cumbee, Renata S., Eckart, Megan E., Finkbeiner, Fred M., Hull, Sam V., Kelley, Richard L., Kilbourne, Caroline A., Leutenegger, Maurice A., Porter, Frederick S., Sakai, Kazuhiro, Wakeham, Nicholas A., Wassell, Edward J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 33
creator Smith, Stephen J.
Witthoeft, Michael C.
Adams, Joseph S.
Bandler, Simon R.
Beaumont, Sophie
Chervenak, James A.
Cumbee, Renata S.
Eckart, Megan E.
Finkbeiner, Fred M.
Hull, Sam V.
Kelley, Richard L.
Kilbourne, Caroline A.
Leutenegger, Maurice A.
Porter, Frederick S.
Sakai, Kazuhiro
Wakeham, Nicholas A.
Wassell, Edward J.
description Changes in the operating environment of transition-edge sensor (TES) microcalorimeters can cause variations in the detector gain function over time. If not corrected, this can degrade the spectral resolution, and cause systematic errors in the knowledge of the absolute energy. The non-linear nature of the TES energy scale function and the potential for multiple, simultaneous sources of drift can make effective corrections extremely challenging. Satellite instruments typically employ an on-board calibration source to provide known reference X-ray lines. This allows real-time monitoring of the detector gain stability and provides information that can be used to correct for drifts. Here we discuss progress towards demonstrating that the energy scale requirements can be met for future instruments such as Athena X-IFU. We present measurements (from ∼1-12 keV) on ∼200 pixels in a prototype X-IFU array. We use a non-linear drift correction algorithm that uses two fiducial calibration lines (5.4 keV and 8.0 keV) to track gain and interpolate a new, corrected gain between a set of three pre-calibrated gain functions that span the anticipated range of induced drifts. We demonstrate this algorithm is effective at correcting the full gain scale in the presence of multiple sources of environmental drift.
doi_str_mv 10.1109/TASC.2023.3258908
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2797298410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10076800</ieee_id><sourcerecordid>2797298410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-813e6b1e8282e7c625410045d79a64a2e7568aed4c141fb7a503c11bc18272433</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHARcD01N49JZlmmD5WKYCu4C2makZQ6U5PMov_elHbh6h7uPedc-BC6BzICINXTarysR5RQNmJUqIqoCzQAIVRBBYjLrImAQlHKrtFNjFtCgCsuBui17kJwNvn2G8-Nb_Ek-CbhLFbTJZ64lG9diLjpAp71qQ8OfxUf5oCXJrndzieH33yMvmvjLbpqzC66u_Mcos_ZdFU_F4v3-Us9XhSWMZkKBcyVa3CKKuqkLangQAgXG1mZkpu8E6UybsMtcGjW0gjCLMDagqKScsaG6PHUuw_db-9i0tuuD21-qamsJK1ULswuOLls6GIMrtH74H9MOGgg-ohMH5HpIzJ9RpYzD6eMd8798xNZKkLYH-WBZVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797298410</pqid></control><display><type>article</type><title>Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions</title><source>IEEE Electronic Library (IEL)</source><creator>Smith, Stephen J. ; Witthoeft, Michael C. ; Adams, Joseph S. ; Bandler, Simon R. ; Beaumont, Sophie ; Chervenak, James A. ; Cumbee, Renata S. ; Eckart, Megan E. ; Finkbeiner, Fred M. ; Hull, Sam V. ; Kelley, Richard L. ; Kilbourne, Caroline A. ; Leutenegger, Maurice A. ; Porter, Frederick S. ; Sakai, Kazuhiro ; Wakeham, Nicholas A. ; Wassell, Edward J.</creator><creatorcontrib>Smith, Stephen J. ; Witthoeft, Michael C. ; Adams, Joseph S. ; Bandler, Simon R. ; Beaumont, Sophie ; Chervenak, James A. ; Cumbee, Renata S. ; Eckart, Megan E. ; Finkbeiner, Fred M. ; Hull, Sam V. ; Kelley, Richard L. ; Kilbourne, Caroline A. ; Leutenegger, Maurice A. ; Porter, Frederick S. ; Sakai, Kazuhiro ; Wakeham, Nicholas A. ; Wassell, Edward J.</creatorcontrib><description>Changes in the operating environment of transition-edge sensor (TES) microcalorimeters can cause variations in the detector gain function over time. If not corrected, this can degrade the spectral resolution, and cause systematic errors in the knowledge of the absolute energy. The non-linear nature of the TES energy scale function and the potential for multiple, simultaneous sources of drift can make effective corrections extremely challenging. Satellite instruments typically employ an on-board calibration source to provide known reference X-ray lines. This allows real-time monitoring of the detector gain stability and provides information that can be used to correct for drifts. Here we discuss progress towards demonstrating that the energy scale requirements can be met for future instruments such as Athena X-IFU. We present measurements (from ∼1-12 keV) on ∼200 pixels in a prototype X-IFU array. We use a non-linear drift correction algorithm that uses two fiducial calibration lines (5.4 keV and 8.0 keV) to track gain and interpolate a new, corrected gain between a set of three pre-calibrated gain functions that span the anticipated range of induced drifts. We demonstrate this algorithm is effective at correcting the full gain scale in the presence of multiple sources of environmental drift.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3258908</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Athena space telescope ; Calibration ; Calorimeters ; Detectors ; Drift ; Energy measurement ; energy-scale calibration ; Gain ; imaging array ; Magnetic fields ; NASA ; Satellite instruments ; Shape ; Spectral resolution ; Systematic errors ; transition-edge sensor ; X-ray spectroscopy</subject><ispartof>IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-813e6b1e8282e7c625410045d79a64a2e7568aed4c141fb7a503c11bc18272433</citedby><cites>FETCH-LOGICAL-c337t-813e6b1e8282e7c625410045d79a64a2e7568aed4c141fb7a503c11bc18272433</cites><orcidid>0000-0003-3894-5889 ; 0000-0003-3132-0536 ; 0000-0001-6842-0544 ; 0000-0003-4096-4675 ; 0000-0002-2237-6696 ; 0000-0001-9464-4103 ; 0000-0002-6374-1119 ; 0000-0002-9247-3010 ; 0000-0001-6237-7776 ; 0000-0001-8397-9338 ; 0000-0003-3380-7540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10076800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10076800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Smith, Stephen J.</creatorcontrib><creatorcontrib>Witthoeft, Michael C.</creatorcontrib><creatorcontrib>Adams, Joseph S.</creatorcontrib><creatorcontrib>Bandler, Simon R.</creatorcontrib><creatorcontrib>Beaumont, Sophie</creatorcontrib><creatorcontrib>Chervenak, James A.</creatorcontrib><creatorcontrib>Cumbee, Renata S.</creatorcontrib><creatorcontrib>Eckart, Megan E.</creatorcontrib><creatorcontrib>Finkbeiner, Fred M.</creatorcontrib><creatorcontrib>Hull, Sam V.</creatorcontrib><creatorcontrib>Kelley, Richard L.</creatorcontrib><creatorcontrib>Kilbourne, Caroline A.</creatorcontrib><creatorcontrib>Leutenegger, Maurice A.</creatorcontrib><creatorcontrib>Porter, Frederick S.</creatorcontrib><creatorcontrib>Sakai, Kazuhiro</creatorcontrib><creatorcontrib>Wakeham, Nicholas A.</creatorcontrib><creatorcontrib>Wassell, Edward J.</creatorcontrib><title>Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Changes in the operating environment of transition-edge sensor (TES) microcalorimeters can cause variations in the detector gain function over time. If not corrected, this can degrade the spectral resolution, and cause systematic errors in the knowledge of the absolute energy. The non-linear nature of the TES energy scale function and the potential for multiple, simultaneous sources of drift can make effective corrections extremely challenging. Satellite instruments typically employ an on-board calibration source to provide known reference X-ray lines. This allows real-time monitoring of the detector gain stability and provides information that can be used to correct for drifts. Here we discuss progress towards demonstrating that the energy scale requirements can be met for future instruments such as Athena X-IFU. We present measurements (from ∼1-12 keV) on ∼200 pixels in a prototype X-IFU array. We use a non-linear drift correction algorithm that uses two fiducial calibration lines (5.4 keV and 8.0 keV) to track gain and interpolate a new, corrected gain between a set of three pre-calibrated gain functions that span the anticipated range of induced drifts. We demonstrate this algorithm is effective at correcting the full gain scale in the presence of multiple sources of environmental drift.</description><subject>Algorithms</subject><subject>Athena space telescope</subject><subject>Calibration</subject><subject>Calorimeters</subject><subject>Detectors</subject><subject>Drift</subject><subject>Energy measurement</subject><subject>energy-scale calibration</subject><subject>Gain</subject><subject>imaging array</subject><subject>Magnetic fields</subject><subject>NASA</subject><subject>Satellite instruments</subject><subject>Shape</subject><subject>Spectral resolution</subject><subject>Systematic errors</subject><subject>transition-edge sensor</subject><subject>X-ray spectroscopy</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKs_QHARcD01N49JZlmmD5WKYCu4C2makZQ6U5PMov_elHbh6h7uPedc-BC6BzICINXTarysR5RQNmJUqIqoCzQAIVRBBYjLrImAQlHKrtFNjFtCgCsuBui17kJwNvn2G8-Nb_Ek-CbhLFbTJZ64lG9diLjpAp71qQ8OfxUf5oCXJrndzieH33yMvmvjLbpqzC66u_Mcos_ZdFU_F4v3-Us9XhSWMZkKBcyVa3CKKuqkLangQAgXG1mZkpu8E6UybsMtcGjW0gjCLMDagqKScsaG6PHUuw_db-9i0tuuD21-qamsJK1ULswuOLls6GIMrtH74H9MOGgg-ohMH5HpIzJ9RpYzD6eMd8798xNZKkLYH-WBZVE</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Smith, Stephen J.</creator><creator>Witthoeft, Michael C.</creator><creator>Adams, Joseph S.</creator><creator>Bandler, Simon R.</creator><creator>Beaumont, Sophie</creator><creator>Chervenak, James A.</creator><creator>Cumbee, Renata S.</creator><creator>Eckart, Megan E.</creator><creator>Finkbeiner, Fred M.</creator><creator>Hull, Sam V.</creator><creator>Kelley, Richard L.</creator><creator>Kilbourne, Caroline A.</creator><creator>Leutenegger, Maurice A.</creator><creator>Porter, Frederick S.</creator><creator>Sakai, Kazuhiro</creator><creator>Wakeham, Nicholas A.</creator><creator>Wassell, Edward J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3894-5889</orcidid><orcidid>https://orcid.org/0000-0003-3132-0536</orcidid><orcidid>https://orcid.org/0000-0001-6842-0544</orcidid><orcidid>https://orcid.org/0000-0003-4096-4675</orcidid><orcidid>https://orcid.org/0000-0002-2237-6696</orcidid><orcidid>https://orcid.org/0000-0001-9464-4103</orcidid><orcidid>https://orcid.org/0000-0002-6374-1119</orcidid><orcidid>https://orcid.org/0000-0002-9247-3010</orcidid><orcidid>https://orcid.org/0000-0001-6237-7776</orcidid><orcidid>https://orcid.org/0000-0001-8397-9338</orcidid><orcidid>https://orcid.org/0000-0003-3380-7540</orcidid></search><sort><creationdate>20230801</creationdate><title>Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions</title><author>Smith, Stephen J. ; Witthoeft, Michael C. ; Adams, Joseph S. ; Bandler, Simon R. ; Beaumont, Sophie ; Chervenak, James A. ; Cumbee, Renata S. ; Eckart, Megan E. ; Finkbeiner, Fred M. ; Hull, Sam V. ; Kelley, Richard L. ; Kilbourne, Caroline A. ; Leutenegger, Maurice A. ; Porter, Frederick S. ; Sakai, Kazuhiro ; Wakeham, Nicholas A. ; Wassell, Edward J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-813e6b1e8282e7c625410045d79a64a2e7568aed4c141fb7a503c11bc18272433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Athena space telescope</topic><topic>Calibration</topic><topic>Calorimeters</topic><topic>Detectors</topic><topic>Drift</topic><topic>Energy measurement</topic><topic>energy-scale calibration</topic><topic>Gain</topic><topic>imaging array</topic><topic>Magnetic fields</topic><topic>NASA</topic><topic>Satellite instruments</topic><topic>Shape</topic><topic>Spectral resolution</topic><topic>Systematic errors</topic><topic>transition-edge sensor</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Stephen J.</creatorcontrib><creatorcontrib>Witthoeft, Michael C.</creatorcontrib><creatorcontrib>Adams, Joseph S.</creatorcontrib><creatorcontrib>Bandler, Simon R.</creatorcontrib><creatorcontrib>Beaumont, Sophie</creatorcontrib><creatorcontrib>Chervenak, James A.</creatorcontrib><creatorcontrib>Cumbee, Renata S.</creatorcontrib><creatorcontrib>Eckart, Megan E.</creatorcontrib><creatorcontrib>Finkbeiner, Fred M.</creatorcontrib><creatorcontrib>Hull, Sam V.</creatorcontrib><creatorcontrib>Kelley, Richard L.</creatorcontrib><creatorcontrib>Kilbourne, Caroline A.</creatorcontrib><creatorcontrib>Leutenegger, Maurice A.</creatorcontrib><creatorcontrib>Porter, Frederick S.</creatorcontrib><creatorcontrib>Sakai, Kazuhiro</creatorcontrib><creatorcontrib>Wakeham, Nicholas A.</creatorcontrib><creatorcontrib>Wassell, Edward J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Smith, Stephen J.</au><au>Witthoeft, Michael C.</au><au>Adams, Joseph S.</au><au>Bandler, Simon R.</au><au>Beaumont, Sophie</au><au>Chervenak, James A.</au><au>Cumbee, Renata S.</au><au>Eckart, Megan E.</au><au>Finkbeiner, Fred M.</au><au>Hull, Sam V.</au><au>Kelley, Richard L.</au><au>Kilbourne, Caroline A.</au><au>Leutenegger, Maurice A.</au><au>Porter, Frederick S.</au><au>Sakai, Kazuhiro</au><au>Wakeham, Nicholas A.</au><au>Wassell, Edward J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Changes in the operating environment of transition-edge sensor (TES) microcalorimeters can cause variations in the detector gain function over time. If not corrected, this can degrade the spectral resolution, and cause systematic errors in the knowledge of the absolute energy. The non-linear nature of the TES energy scale function and the potential for multiple, simultaneous sources of drift can make effective corrections extremely challenging. Satellite instruments typically employ an on-board calibration source to provide known reference X-ray lines. This allows real-time monitoring of the detector gain stability and provides information that can be used to correct for drifts. Here we discuss progress towards demonstrating that the energy scale requirements can be met for future instruments such as Athena X-IFU. We present measurements (from ∼1-12 keV) on ∼200 pixels in a prototype X-IFU array. We use a non-linear drift correction algorithm that uses two fiducial calibration lines (5.4 keV and 8.0 keV) to track gain and interpolate a new, corrected gain between a set of three pre-calibrated gain functions that span the anticipated range of induced drifts. We demonstrate this algorithm is effective at correcting the full gain scale in the presence of multiple sources of environmental drift.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3258908</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3894-5889</orcidid><orcidid>https://orcid.org/0000-0003-3132-0536</orcidid><orcidid>https://orcid.org/0000-0001-6842-0544</orcidid><orcidid>https://orcid.org/0000-0003-4096-4675</orcidid><orcidid>https://orcid.org/0000-0002-2237-6696</orcidid><orcidid>https://orcid.org/0000-0001-9464-4103</orcidid><orcidid>https://orcid.org/0000-0002-6374-1119</orcidid><orcidid>https://orcid.org/0000-0002-9247-3010</orcidid><orcidid>https://orcid.org/0000-0001-6237-7776</orcidid><orcidid>https://orcid.org/0000-0001-8397-9338</orcidid><orcidid>https://orcid.org/0000-0003-3380-7540</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2023-08, Vol.33 (5), p.1-6
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2797298410
source IEEE Electronic Library (IEL)
subjects Algorithms
Athena space telescope
Calibration
Calorimeters
Detectors
Drift
Energy measurement
energy-scale calibration
Gain
imaging array
Magnetic fields
NASA
Satellite instruments
Shape
Spectral resolution
Systematic errors
transition-edge sensor
X-ray spectroscopy
title Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20Gain%20Drift%20in%20TES%20Detectors%20for%20Future%20X-Ray%20Satellite%20Missions&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Smith,%20Stephen%20J.&rft.date=2023-08-01&rft.volume=33&rft.issue=5&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3258908&rft_dat=%3Cproquest_RIE%3E2797298410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2797298410&rft_id=info:pmid/&rft_ieee_id=10076800&rfr_iscdi=true