A Generic Cryptographic Deep-Learning Inference Platform for Remote Sensing Scenes
Deep learning plays an essential role in multidisciplinary research of Remote sensing. We will encounter security problems during the data acquisition, processing, and result generation stages. Therefore, secure deep-learning inference services are one of the most important links. Some theoretical p...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2023-01, Vol.16, p.1-13 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 16 |
creator | Chen, Qian Wu, Yulin Wang, Xuan Jiang, Zoe L. Zhang, Weizhe Liu, Yang Alazab, Mamoun |
description | Deep learning plays an essential role in multidisciplinary research of Remote sensing. We will encounter security problems during the data acquisition, processing, and result generation stages. Therefore, secure deep-learning inference services are one of the most important links. Some theoretical progress has been made in cryptographic deep-learning inference, but it lacks a general platform that can be realized in reality. Constantly modifying the corresponding models to approximate the plaintext results reveal the model information to a certain extent. This paper proposes a generic post-quantum platform named the PyHENet, which perfectly combines cryptography with plaintext deep learning libraries. Secondly, we optimize the convolution, activation, and pooling functions and complete the ciphertext operation under floating point numbers for the first time. Moreover, the computation process is accelerated by SIMD and GPU parallel computing. The experimental results show that the PyHENet is closer to the plaintext inference platform than any other cryptographic model and has satisfactory robustness. The optimized PyHENet obtained a better accuracy of 95.05% in the high-resolution NaSC-TG2 database, which the Tiangong-2 space station received. |
doi_str_mv | 10.1109/JSTARS.2023.3260867 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2797286687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10079091</ieee_id><doaj_id>oai_doaj_org_article_985d00396d6647ecbe0b123314208492</doaj_id><sourcerecordid>2797286687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-92cee0c17d894da03f588f8f3ccee432aa7f61f6695bfa5ed539deb266871e263</originalsourceid><addsrcrecordid>eNpNUUtPwzAMjhBIjMcvgEMlzh1O0qbJcRowhiaBtnGOstQZnbampN1h_56MToiLLVvfw_JHyB2FIaWgHt8Wy9F8MWTA-JAzAVIUZ2TAaE5TmvP8nAyo4iqlGWSX5KptNwCCFYoPyHyUTLDGUNlkHA5N59fBNF9xekJs0hmaUFf1OpnWDgPWFpOPremcD7sklmSOO99hssC6PaIWNkq1N-TCmW2Lt6d-TT5fnpfj13T2PpmOR7PUZqC6VDGLCJYWpVRZaYC7XEonHbdxn3FmTOEEdUKofOVMjmXOVYkrJoQsKDLBr8m01y292egmVDsTDtqbSv8ufFhrE7rKblErmZcAXIlSiKxAu0JYUcY5zRjITLGo9dBrNcF_77Ht9MbvQx3P1_FPBZNH14jiPcoG37YB3Z8rBX0MQvdB6GMQ-hREZN33rAoR_zGgUKAo_wGwEoOz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797286687</pqid></control><display><type>article</type><title>A Generic Cryptographic Deep-Learning Inference Platform for Remote Sensing Scenes</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Qian ; Wu, Yulin ; Wang, Xuan ; Jiang, Zoe L. ; Zhang, Weizhe ; Liu, Yang ; Alazab, Mamoun</creator><creatorcontrib>Chen, Qian ; Wu, Yulin ; Wang, Xuan ; Jiang, Zoe L. ; Zhang, Weizhe ; Liu, Yang ; Alazab, Mamoun</creatorcontrib><description>Deep learning plays an essential role in multidisciplinary research of Remote sensing. We will encounter security problems during the data acquisition, processing, and result generation stages. Therefore, secure deep-learning inference services are one of the most important links. Some theoretical progress has been made in cryptographic deep-learning inference, but it lacks a general platform that can be realized in reality. Constantly modifying the corresponding models to approximate the plaintext results reveal the model information to a certain extent. This paper proposes a generic post-quantum platform named the PyHENet, which perfectly combines cryptography with plaintext deep learning libraries. Secondly, we optimize the convolution, activation, and pooling functions and complete the ciphertext operation under floating point numbers for the first time. Moreover, the computation process is accelerated by SIMD and GPU parallel computing. The experimental results show that the PyHENet is closer to the plaintext inference platform than any other cryptographic model and has satisfactory robustness. The optimized PyHENet obtained a better accuracy of 95.05% in the high-resolution NaSC-TG2 database, which the Tiangong-2 space station received.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2023.3260867</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computation ; Convolution ; Convolutional neural network ; Convolutional neural network (CNN) ; Cryptography ; Data acquisition ; Data transmission ; Deep learning ; deep learning inference ; Encryption ; Floating point arithmetic ; fully homomorphic encryption ; fully homomorphic encryption (HE) ; Homomorphic encryption ; Inference ; Multidisciplinary research ; privacy preserving ; Remote sensing ; remote sensing scenes ; Resists ; Security ; Space stations ; Task analysis</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2023-01, Vol.16, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-92cee0c17d894da03f588f8f3ccee432aa7f61f6695bfa5ed539deb266871e263</citedby><cites>FETCH-LOGICAL-c409t-92cee0c17d894da03f588f8f3ccee432aa7f61f6695bfa5ed539deb266871e263</cites><orcidid>0000-0002-8944-7444 ; 0000-0003-4783-876X ; 0000-0003-2486-5765 ; 0000-0002-3512-0649 ; 0000-0001-7952-7136 ; 0000-0002-2341-2118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Wu, Yulin</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Jiang, Zoe L.</creatorcontrib><creatorcontrib>Zhang, Weizhe</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Alazab, Mamoun</creatorcontrib><title>A Generic Cryptographic Deep-Learning Inference Platform for Remote Sensing Scenes</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Deep learning plays an essential role in multidisciplinary research of Remote sensing. We will encounter security problems during the data acquisition, processing, and result generation stages. Therefore, secure deep-learning inference services are one of the most important links. Some theoretical progress has been made in cryptographic deep-learning inference, but it lacks a general platform that can be realized in reality. Constantly modifying the corresponding models to approximate the plaintext results reveal the model information to a certain extent. This paper proposes a generic post-quantum platform named the PyHENet, which perfectly combines cryptography with plaintext deep learning libraries. Secondly, we optimize the convolution, activation, and pooling functions and complete the ciphertext operation under floating point numbers for the first time. Moreover, the computation process is accelerated by SIMD and GPU parallel computing. The experimental results show that the PyHENet is closer to the plaintext inference platform than any other cryptographic model and has satisfactory robustness. The optimized PyHENet obtained a better accuracy of 95.05% in the high-resolution NaSC-TG2 database, which the Tiangong-2 space station received.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Convolution</subject><subject>Convolutional neural network</subject><subject>Convolutional neural network (CNN)</subject><subject>Cryptography</subject><subject>Data acquisition</subject><subject>Data transmission</subject><subject>Deep learning</subject><subject>deep learning inference</subject><subject>Encryption</subject><subject>Floating point arithmetic</subject><subject>fully homomorphic encryption</subject><subject>fully homomorphic encryption (HE)</subject><subject>Homomorphic encryption</subject><subject>Inference</subject><subject>Multidisciplinary research</subject><subject>privacy preserving</subject><subject>Remote sensing</subject><subject>remote sensing scenes</subject><subject>Resists</subject><subject>Security</subject><subject>Space stations</subject><subject>Task analysis</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtPwzAMjhBIjMcvgEMlzh1O0qbJcRowhiaBtnGOstQZnbampN1h_56MToiLLVvfw_JHyB2FIaWgHt8Wy9F8MWTA-JAzAVIUZ2TAaE5TmvP8nAyo4iqlGWSX5KptNwCCFYoPyHyUTLDGUNlkHA5N59fBNF9xekJs0hmaUFf1OpnWDgPWFpOPremcD7sklmSOO99hssC6PaIWNkq1N-TCmW2Lt6d-TT5fnpfj13T2PpmOR7PUZqC6VDGLCJYWpVRZaYC7XEonHbdxn3FmTOEEdUKofOVMjmXOVYkrJoQsKDLBr8m01y292egmVDsTDtqbSv8ufFhrE7rKblErmZcAXIlSiKxAu0JYUcY5zRjITLGo9dBrNcF_77Ht9MbvQx3P1_FPBZNH14jiPcoG37YB3Z8rBX0MQvdB6GMQ-hREZN33rAoR_zGgUKAo_wGwEoOz</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Qian</creator><creator>Wu, Yulin</creator><creator>Wang, Xuan</creator><creator>Jiang, Zoe L.</creator><creator>Zhang, Weizhe</creator><creator>Liu, Yang</creator><creator>Alazab, Mamoun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8944-7444</orcidid><orcidid>https://orcid.org/0000-0003-4783-876X</orcidid><orcidid>https://orcid.org/0000-0003-2486-5765</orcidid><orcidid>https://orcid.org/0000-0002-3512-0649</orcidid><orcidid>https://orcid.org/0000-0001-7952-7136</orcidid><orcidid>https://orcid.org/0000-0002-2341-2118</orcidid></search><sort><creationdate>20230101</creationdate><title>A Generic Cryptographic Deep-Learning Inference Platform for Remote Sensing Scenes</title><author>Chen, Qian ; Wu, Yulin ; Wang, Xuan ; Jiang, Zoe L. ; Zhang, Weizhe ; Liu, Yang ; Alazab, Mamoun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-92cee0c17d894da03f588f8f3ccee432aa7f61f6695bfa5ed539deb266871e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Convolution</topic><topic>Convolutional neural network</topic><topic>Convolutional neural network (CNN)</topic><topic>Cryptography</topic><topic>Data acquisition</topic><topic>Data transmission</topic><topic>Deep learning</topic><topic>deep learning inference</topic><topic>Encryption</topic><topic>Floating point arithmetic</topic><topic>fully homomorphic encryption</topic><topic>fully homomorphic encryption (HE)</topic><topic>Homomorphic encryption</topic><topic>Inference</topic><topic>Multidisciplinary research</topic><topic>privacy preserving</topic><topic>Remote sensing</topic><topic>remote sensing scenes</topic><topic>Resists</topic><topic>Security</topic><topic>Space stations</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Wu, Yulin</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Jiang, Zoe L.</creatorcontrib><creatorcontrib>Zhang, Weizhe</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Alazab, Mamoun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qian</au><au>Wu, Yulin</au><au>Wang, Xuan</au><au>Jiang, Zoe L.</au><au>Zhang, Weizhe</au><au>Liu, Yang</au><au>Alazab, Mamoun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generic Cryptographic Deep-Learning Inference Platform for Remote Sensing Scenes</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>16</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Deep learning plays an essential role in multidisciplinary research of Remote sensing. We will encounter security problems during the data acquisition, processing, and result generation stages. Therefore, secure deep-learning inference services are one of the most important links. Some theoretical progress has been made in cryptographic deep-learning inference, but it lacks a general platform that can be realized in reality. Constantly modifying the corresponding models to approximate the plaintext results reveal the model information to a certain extent. This paper proposes a generic post-quantum platform named the PyHENet, which perfectly combines cryptography with plaintext deep learning libraries. Secondly, we optimize the convolution, activation, and pooling functions and complete the ciphertext operation under floating point numbers for the first time. Moreover, the computation process is accelerated by SIMD and GPU parallel computing. The experimental results show that the PyHENet is closer to the plaintext inference platform than any other cryptographic model and has satisfactory robustness. The optimized PyHENet obtained a better accuracy of 95.05% in the high-resolution NaSC-TG2 database, which the Tiangong-2 space station received.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2023.3260867</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8944-7444</orcidid><orcidid>https://orcid.org/0000-0003-4783-876X</orcidid><orcidid>https://orcid.org/0000-0003-2486-5765</orcidid><orcidid>https://orcid.org/0000-0002-3512-0649</orcidid><orcidid>https://orcid.org/0000-0001-7952-7136</orcidid><orcidid>https://orcid.org/0000-0002-2341-2118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2023-01, Vol.16, p.1-13 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2797286687 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Computation Convolution Convolutional neural network Convolutional neural network (CNN) Cryptography Data acquisition Data transmission Deep learning deep learning inference Encryption Floating point arithmetic fully homomorphic encryption fully homomorphic encryption (HE) Homomorphic encryption Inference Multidisciplinary research privacy preserving Remote sensing remote sensing scenes Resists Security Space stations Task analysis |
title | A Generic Cryptographic Deep-Learning Inference Platform for Remote Sensing Scenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generic%20Cryptographic%20Deep-Learning%20Inference%20Platform%20for%20Remote%20Sensing%20Scenes&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Chen,%20Qian&rft.date=2023-01-01&rft.volume=16&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2023.3260867&rft_dat=%3Cproquest_cross%3E2797286687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2797286687&rft_id=info:pmid/&rft_ieee_id=10079091&rft_doaj_id=oai_doaj_org_article_985d00396d6647ecbe0b123314208492&rfr_iscdi=true |