Intelligent element: Coupling Green function approach and artificial intelligence to reduce discretization effort

This research work presents a method that modifies a classical numerical method using artificial intelligence (AI) and takes advantage of an analytical method to minimize the usual need for increasing discretization. Its formulation is based on the integration of two main concepts: the reciprocity t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2023-04, Vol.47 (6), p.1051-1072
Hauptverfasser: Peres, Matheus L., Sotelino, Elisa D., Mesquita, Leonardo C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1072
container_issue 6
container_start_page 1051
container_title International journal for numerical and analytical methods in geomechanics
container_volume 47
creator Peres, Matheus L.
Sotelino, Elisa D.
Mesquita, Leonardo C.
description This research work presents a method that modifies a classical numerical method using artificial intelligence (AI) and takes advantage of an analytical method to minimize the usual need for increasing discretization. Its formulation is based on the integration of two main concepts: the reciprocity theorem and the generalization capability of artificial neural networks (ANNs). The reciprocity theorem is used to formulate the mathematical expression governing the geomechanical problem, which is then discretized in space into intelligent elements. The behavior of the strain field inside these new elements is predicted using an ANN. To make these predictions, the neural network uses displacement boundary conditions, material properties, and the geometric shape of the element as input data. The comparison was performed for two examples, in which the first had a uniform depletion of the reservoir, while the second had a non‐uniform variation of the pore pressure. For the same level of accuracy, the proposed method was 10 times faster than the traditional method for the first example and five times faster for the second example on a computer with 12 threads of 2.6 GHz and 32 GB RAM.
doi_str_mv 10.1002/nag.3505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2796741133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2796741133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-a38d25750aaaa95f9a93af61d93fcb4fc1801bd4d3090ea1060f7ba99ad8f6413</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgRwh48bJ1stnsbryVorVQ9KLnkOZPTdlmt9ksUj-9aSvenMsbmN-8GR5CtwQmBCB_8HI9oQzYGRoR4GXGa0bP0QhoSTMOJblEV32_AQCWpiO0W_homsatjY_YNGab9BHP2qFrnF_jeTDGYzt4FV3rsey60Er1iaXXWIborFNONtj9mSiDY4uD0UPqtOtVMNF9y-O2sbYN8RpdWNn05uZXx-jj-el99pIt3-aL2XSZqZxTlkla65xVDGQqziyXnEpbEs2pVavCKlIDWelCU-BgJIESbLWSnEtd27IgdIzuTr7p5d1g-ig27RB8OinyipdVQQilibo_USq0fR-MFV1wWxn2goA4BCpSoOIQaEKzE_rlGrP_lxOv0_mR_wFAo3kU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2796741133</pqid></control><display><type>article</type><title>Intelligent element: Coupling Green function approach and artificial intelligence to reduce discretization effort</title><source>Access via Wiley Online Library</source><creator>Peres, Matheus L. ; Sotelino, Elisa D. ; Mesquita, Leonardo C.</creator><creatorcontrib>Peres, Matheus L. ; Sotelino, Elisa D. ; Mesquita, Leonardo C.</creatorcontrib><description>This research work presents a method that modifies a classical numerical method using artificial intelligence (AI) and takes advantage of an analytical method to minimize the usual need for increasing discretization. Its formulation is based on the integration of two main concepts: the reciprocity theorem and the generalization capability of artificial neural networks (ANNs). The reciprocity theorem is used to formulate the mathematical expression governing the geomechanical problem, which is then discretized in space into intelligent elements. The behavior of the strain field inside these new elements is predicted using an ANN. To make these predictions, the neural network uses displacement boundary conditions, material properties, and the geometric shape of the element as input data. The comparison was performed for two examples, in which the first had a uniform depletion of the reservoir, while the second had a non‐uniform variation of the pore pressure. For the same level of accuracy, the proposed method was 10 times faster than the traditional method for the first example and five times faster for the second example on a computer with 12 threads of 2.6 GHz and 32 GB RAM.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3505</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Analytical methods ; Artificial intelligence ; artificial neural network ; Artificial neural networks ; Boundary conditions ; computational methods ; Depletion ; Discretization ; Geomechanics ; Green function ; Green's function ; Green's functions ; Material properties ; Mathematical models ; Neural networks ; Numerical methods ; Pore pressure ; Predictions ; Reciprocity ; Reciprocity theorem</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2023-04, Vol.47 (6), p.1051-1072</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-a38d25750aaaa95f9a93af61d93fcb4fc1801bd4d3090ea1060f7ba99ad8f6413</citedby><cites>FETCH-LOGICAL-c2935-a38d25750aaaa95f9a93af61d93fcb4fc1801bd4d3090ea1060f7ba99ad8f6413</cites><orcidid>0000-0002-2863-7498 ; 0000-0001-5764-5334 ; 0000-0001-6003-1237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Peres, Matheus L.</creatorcontrib><creatorcontrib>Sotelino, Elisa D.</creatorcontrib><creatorcontrib>Mesquita, Leonardo C.</creatorcontrib><title>Intelligent element: Coupling Green function approach and artificial intelligence to reduce discretization effort</title><title>International journal for numerical and analytical methods in geomechanics</title><description>This research work presents a method that modifies a classical numerical method using artificial intelligence (AI) and takes advantage of an analytical method to minimize the usual need for increasing discretization. Its formulation is based on the integration of two main concepts: the reciprocity theorem and the generalization capability of artificial neural networks (ANNs). The reciprocity theorem is used to formulate the mathematical expression governing the geomechanical problem, which is then discretized in space into intelligent elements. The behavior of the strain field inside these new elements is predicted using an ANN. To make these predictions, the neural network uses displacement boundary conditions, material properties, and the geometric shape of the element as input data. The comparison was performed for two examples, in which the first had a uniform depletion of the reservoir, while the second had a non‐uniform variation of the pore pressure. For the same level of accuracy, the proposed method was 10 times faster than the traditional method for the first example and five times faster for the second example on a computer with 12 threads of 2.6 GHz and 32 GB RAM.</description><subject>Analytical methods</subject><subject>Artificial intelligence</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Boundary conditions</subject><subject>computational methods</subject><subject>Depletion</subject><subject>Discretization</subject><subject>Geomechanics</subject><subject>Green function</subject><subject>Green's function</subject><subject>Green's functions</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>Pore pressure</subject><subject>Predictions</subject><subject>Reciprocity</subject><subject>Reciprocity theorem</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgRwh48bJ1stnsbryVorVQ9KLnkOZPTdlmt9ksUj-9aSvenMsbmN-8GR5CtwQmBCB_8HI9oQzYGRoR4GXGa0bP0QhoSTMOJblEV32_AQCWpiO0W_homsatjY_YNGab9BHP2qFrnF_jeTDGYzt4FV3rsey60Er1iaXXWIborFNONtj9mSiDY4uD0UPqtOtVMNF9y-O2sbYN8RpdWNn05uZXx-jj-el99pIt3-aL2XSZqZxTlkla65xVDGQqziyXnEpbEs2pVavCKlIDWelCU-BgJIESbLWSnEtd27IgdIzuTr7p5d1g-ig27RB8OinyipdVQQilibo_USq0fR-MFV1wWxn2goA4BCpSoOIQaEKzE_rlGrP_lxOv0_mR_wFAo3kU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Peres, Matheus L.</creator><creator>Sotelino, Elisa D.</creator><creator>Mesquita, Leonardo C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2863-7498</orcidid><orcidid>https://orcid.org/0000-0001-5764-5334</orcidid><orcidid>https://orcid.org/0000-0001-6003-1237</orcidid></search><sort><creationdate>20230401</creationdate><title>Intelligent element: Coupling Green function approach and artificial intelligence to reduce discretization effort</title><author>Peres, Matheus L. ; Sotelino, Elisa D. ; Mesquita, Leonardo C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-a38d25750aaaa95f9a93af61d93fcb4fc1801bd4d3090ea1060f7ba99ad8f6413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical methods</topic><topic>Artificial intelligence</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Boundary conditions</topic><topic>computational methods</topic><topic>Depletion</topic><topic>Discretization</topic><topic>Geomechanics</topic><topic>Green function</topic><topic>Green's function</topic><topic>Green's functions</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>Pore pressure</topic><topic>Predictions</topic><topic>Reciprocity</topic><topic>Reciprocity theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peres, Matheus L.</creatorcontrib><creatorcontrib>Sotelino, Elisa D.</creatorcontrib><creatorcontrib>Mesquita, Leonardo C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peres, Matheus L.</au><au>Sotelino, Elisa D.</au><au>Mesquita, Leonardo C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent element: Coupling Green function approach and artificial intelligence to reduce discretization effort</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>47</volume><issue>6</issue><spage>1051</spage><epage>1072</epage><pages>1051-1072</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>This research work presents a method that modifies a classical numerical method using artificial intelligence (AI) and takes advantage of an analytical method to minimize the usual need for increasing discretization. Its formulation is based on the integration of two main concepts: the reciprocity theorem and the generalization capability of artificial neural networks (ANNs). The reciprocity theorem is used to formulate the mathematical expression governing the geomechanical problem, which is then discretized in space into intelligent elements. The behavior of the strain field inside these new elements is predicted using an ANN. To make these predictions, the neural network uses displacement boundary conditions, material properties, and the geometric shape of the element as input data. The comparison was performed for two examples, in which the first had a uniform depletion of the reservoir, while the second had a non‐uniform variation of the pore pressure. For the same level of accuracy, the proposed method was 10 times faster than the traditional method for the first example and five times faster for the second example on a computer with 12 threads of 2.6 GHz and 32 GB RAM.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3505</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2863-7498</orcidid><orcidid>https://orcid.org/0000-0001-5764-5334</orcidid><orcidid>https://orcid.org/0000-0001-6003-1237</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2023-04, Vol.47 (6), p.1051-1072
issn 0363-9061
1096-9853
language eng
recordid cdi_proquest_journals_2796741133
source Access via Wiley Online Library
subjects Analytical methods
Artificial intelligence
artificial neural network
Artificial neural networks
Boundary conditions
computational methods
Depletion
Discretization
Geomechanics
Green function
Green's function
Green's functions
Material properties
Mathematical models
Neural networks
Numerical methods
Pore pressure
Predictions
Reciprocity
Reciprocity theorem
title Intelligent element: Coupling Green function approach and artificial intelligence to reduce discretization effort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20element:%20Coupling%20Green%20function%20approach%20and%20artificial%20intelligence%20to%20reduce%20discretization%20effort&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Peres,%20Matheus%20L.&rft.date=2023-04-01&rft.volume=47&rft.issue=6&rft.spage=1051&rft.epage=1072&rft.pages=1051-1072&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3505&rft_dat=%3Cproquest_cross%3E2796741133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2796741133&rft_id=info:pmid/&rfr_iscdi=true