Phase-Field Study of the History-Effect of Remelted Microstructures on Nucleation During Additive Manufacturing of Ni-Based Superalloys

In the current work we employ multi-phase-field simulations to understand the effect of remelting on microstructure evolution, especially on nucleation of new grains during selective electron beam melting (SEBM) of Ni-based super alloy. The phase-field model is coupled to both mass and heat transpor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2023-05, Vol.54 (5), p.1825-1842
Hauptverfasser: Uddagiri, Murali, Shchyglo, Oleg, Steinbach, Ingo, Wahlmann, Benjamin, Koerner, Carolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1842
container_issue 5
container_start_page 1825
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 54
creator Uddagiri, Murali
Shchyglo, Oleg
Steinbach, Ingo
Wahlmann, Benjamin
Koerner, Carolin
description In the current work we employ multi-phase-field simulations to understand the effect of remelting on microstructure evolution, especially on nucleation of new grains during selective electron beam melting (SEBM) of Ni-based super alloy. The phase-field model is coupled to both mass and heat transport phenomena including release of latent heat of solidification. We run remelting simulations in both as cast and homogenized conditions. Experimental observations show that remelting triggers the nucleation of new grains at the melt pool border. The simulation results shed more light on the local conditions at the melt pool border thereby enhancing our understanding of the mechanisms responsible for the nucleation. The simulation results are validated with experimental results obtained for the Ni–20.5 mol pct Al model binary alloy.
doi_str_mv 10.1007/s11661-023-07004-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2795897933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795897933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-aebfaa06678f958dfd4a6e139247bf6edfca0279fd000789de9262360a1408a33</originalsourceid><addsrcrecordid>eNp9UMlOwzAUjBBIrD_AyRJnw3OcOvERylKkFhDL2XLjZ2oUmuIFqV_Ab-NQJG6c3uhpFs0UxTGDUwZQnwXGhGAUSk6hBqgobBV7bFRxymQF2xlDzelIlHy32A_hDQCY5GKv-HpY6ID02mFnyFNMZk16S-ICycSF2Ps1vbIW2zh8H_Edu4iGzFzr-xB9amPyGEi_JHep7VBHl-Fl8m75Ss6NcdF9IpnpZbJ6oA7v7HPn6EUOzXlphV53Xb8Oh8WO1V3Ao997ULxcXz2PJ3R6f3M7Pp_Slgseqca51RqEqBsrR42xptICGZdlVc-tQGNbDWUtrckN60YalGUuLUCzChrN-UFxsvFd-f4jYYjqrU9-mSNVlo0aWUs-sMoNa-gZPFq18u5d-7VioIbB1WZwlQdXP4MryCK-EYXV0BT9n_U_qm_1iYUv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795897933</pqid></control><display><type>article</type><title>Phase-Field Study of the History-Effect of Remelted Microstructures on Nucleation During Additive Manufacturing of Ni-Based Superalloys</title><source>SpringerNature Journals</source><creator>Uddagiri, Murali ; Shchyglo, Oleg ; Steinbach, Ingo ; Wahlmann, Benjamin ; Koerner, Carolin</creator><creatorcontrib>Uddagiri, Murali ; Shchyglo, Oleg ; Steinbach, Ingo ; Wahlmann, Benjamin ; Koerner, Carolin</creatorcontrib><description>In the current work we employ multi-phase-field simulations to understand the effect of remelting on microstructure evolution, especially on nucleation of new grains during selective electron beam melting (SEBM) of Ni-based super alloy. The phase-field model is coupled to both mass and heat transport phenomena including release of latent heat of solidification. We run remelting simulations in both as cast and homogenized conditions. Experimental observations show that remelting triggers the nucleation of new grains at the melt pool border. The simulation results shed more light on the local conditions at the melt pool border thereby enhancing our understanding of the mechanisms responsible for the nucleation. The simulation results are validated with experimental results obtained for the Ni–20.5 mol pct Al model binary alloy.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-023-07004-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Additive manufacturing ; Alloys ; Binary alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electron beam melting ; Field study ; Fourth European Symposium on Superalloys and their Applications ; Grains ; Heat ; Heat of fusion ; Latent heat ; Materials Science ; Melt pools ; Melting ; Metallic Materials ; Microstructure ; Nanotechnology ; Nickel base alloys ; Nucleation ; Simulation ; Single crystals ; Solidification ; Structural Materials ; Superalloys ; Surfaces and Interfaces ; Thin Films ; Topical Collection: Processing and Applications of Superalloys ; Transport phenomena</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-05, Vol.54 (5), p.1825-1842</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-aebfaa06678f958dfd4a6e139247bf6edfca0279fd000789de9262360a1408a33</citedby><cites>FETCH-LOGICAL-c363t-aebfaa06678f958dfd4a6e139247bf6edfca0279fd000789de9262360a1408a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-023-07004-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-023-07004-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Uddagiri, Murali</creatorcontrib><creatorcontrib>Shchyglo, Oleg</creatorcontrib><creatorcontrib>Steinbach, Ingo</creatorcontrib><creatorcontrib>Wahlmann, Benjamin</creatorcontrib><creatorcontrib>Koerner, Carolin</creatorcontrib><title>Phase-Field Study of the History-Effect of Remelted Microstructures on Nucleation During Additive Manufacturing of Ni-Based Superalloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In the current work we employ multi-phase-field simulations to understand the effect of remelting on microstructure evolution, especially on nucleation of new grains during selective electron beam melting (SEBM) of Ni-based super alloy. The phase-field model is coupled to both mass and heat transport phenomena including release of latent heat of solidification. We run remelting simulations in both as cast and homogenized conditions. Experimental observations show that remelting triggers the nucleation of new grains at the melt pool border. The simulation results shed more light on the local conditions at the melt pool border thereby enhancing our understanding of the mechanisms responsible for the nucleation. The simulation results are validated with experimental results obtained for the Ni–20.5 mol pct Al model binary alloy.</description><subject>Additive manufacturing</subject><subject>Alloys</subject><subject>Binary alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electron beam melting</subject><subject>Field study</subject><subject>Fourth European Symposium on Superalloys and their Applications</subject><subject>Grains</subject><subject>Heat</subject><subject>Heat of fusion</subject><subject>Latent heat</subject><subject>Materials Science</subject><subject>Melt pools</subject><subject>Melting</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Nickel base alloys</subject><subject>Nucleation</subject><subject>Simulation</subject><subject>Single crystals</subject><subject>Solidification</subject><subject>Structural Materials</subject><subject>Superalloys</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Topical Collection: Processing and Applications of Superalloys</subject><subject>Transport phenomena</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMlOwzAUjBBIrD_AyRJnw3OcOvERylKkFhDL2XLjZ2oUmuIFqV_Ab-NQJG6c3uhpFs0UxTGDUwZQnwXGhGAUSk6hBqgobBV7bFRxymQF2xlDzelIlHy32A_hDQCY5GKv-HpY6ID02mFnyFNMZk16S-ICycSF2Ps1vbIW2zh8H_Edu4iGzFzr-xB9amPyGEi_JHep7VBHl-Fl8m75Ss6NcdF9IpnpZbJ6oA7v7HPn6EUOzXlphV53Xb8Oh8WO1V3Ao997ULxcXz2PJ3R6f3M7Pp_Slgseqca51RqEqBsrR42xptICGZdlVc-tQGNbDWUtrckN60YalGUuLUCzChrN-UFxsvFd-f4jYYjqrU9-mSNVlo0aWUs-sMoNa-gZPFq18u5d-7VioIbB1WZwlQdXP4MryCK-EYXV0BT9n_U_qm_1iYUv</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Uddagiri, Murali</creator><creator>Shchyglo, Oleg</creator><creator>Steinbach, Ingo</creator><creator>Wahlmann, Benjamin</creator><creator>Koerner, Carolin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230501</creationdate><title>Phase-Field Study of the History-Effect of Remelted Microstructures on Nucleation During Additive Manufacturing of Ni-Based Superalloys</title><author>Uddagiri, Murali ; Shchyglo, Oleg ; Steinbach, Ingo ; Wahlmann, Benjamin ; Koerner, Carolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-aebfaa06678f958dfd4a6e139247bf6edfca0279fd000789de9262360a1408a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additive manufacturing</topic><topic>Alloys</topic><topic>Binary alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electron beam melting</topic><topic>Field study</topic><topic>Fourth European Symposium on Superalloys and their Applications</topic><topic>Grains</topic><topic>Heat</topic><topic>Heat of fusion</topic><topic>Latent heat</topic><topic>Materials Science</topic><topic>Melt pools</topic><topic>Melting</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Nickel base alloys</topic><topic>Nucleation</topic><topic>Simulation</topic><topic>Single crystals</topic><topic>Solidification</topic><topic>Structural Materials</topic><topic>Superalloys</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Topical Collection: Processing and Applications of Superalloys</topic><topic>Transport phenomena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uddagiri, Murali</creatorcontrib><creatorcontrib>Shchyglo, Oleg</creatorcontrib><creatorcontrib>Steinbach, Ingo</creatorcontrib><creatorcontrib>Wahlmann, Benjamin</creatorcontrib><creatorcontrib>Koerner, Carolin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uddagiri, Murali</au><au>Shchyglo, Oleg</au><au>Steinbach, Ingo</au><au>Wahlmann, Benjamin</au><au>Koerner, Carolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Field Study of the History-Effect of Remelted Microstructures on Nucleation During Additive Manufacturing of Ni-Based Superalloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>54</volume><issue>5</issue><spage>1825</spage><epage>1842</epage><pages>1825-1842</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>In the current work we employ multi-phase-field simulations to understand the effect of remelting on microstructure evolution, especially on nucleation of new grains during selective electron beam melting (SEBM) of Ni-based super alloy. The phase-field model is coupled to both mass and heat transport phenomena including release of latent heat of solidification. We run remelting simulations in both as cast and homogenized conditions. Experimental observations show that remelting triggers the nucleation of new grains at the melt pool border. The simulation results shed more light on the local conditions at the melt pool border thereby enhancing our understanding of the mechanisms responsible for the nucleation. The simulation results are validated with experimental results obtained for the Ni–20.5 mol pct Al model binary alloy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-023-07004-0</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-05, Vol.54 (5), p.1825-1842
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2795897933
source SpringerNature Journals
subjects Additive manufacturing
Alloys
Binary alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Electron beam melting
Field study
Fourth European Symposium on Superalloys and their Applications
Grains
Heat
Heat of fusion
Latent heat
Materials Science
Melt pools
Melting
Metallic Materials
Microstructure
Nanotechnology
Nickel base alloys
Nucleation
Simulation
Single crystals
Solidification
Structural Materials
Superalloys
Surfaces and Interfaces
Thin Films
Topical Collection: Processing and Applications of Superalloys
Transport phenomena
title Phase-Field Study of the History-Effect of Remelted Microstructures on Nucleation During Additive Manufacturing of Ni-Based Superalloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Field%20Study%20of%20the%20History-Effect%20of%20Remelted%20Microstructures%20on%20Nucleation%20During%20Additive%20Manufacturing%20of%20Ni-Based%20Superalloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Uddagiri,%20Murali&rft.date=2023-05-01&rft.volume=54&rft.issue=5&rft.spage=1825&rft.epage=1842&rft.pages=1825-1842&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-023-07004-0&rft_dat=%3Cproquest_cross%3E2795897933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795897933&rft_id=info:pmid/&rfr_iscdi=true