Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT
This article primarily explores the electronic properties and geometrical structures of a Ge 13 cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge 12 X clusters...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2023-05, Vol.52 (5), p.3018-3028 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3028 |
---|---|
container_issue | 5 |
container_start_page | 3018 |
container_title | Journal of electronic materials |
container_volume | 52 |
creator | Arunachalam, B. Manavalan, R. Gopalakrishnan, N. |
description | This article primarily explores the electronic properties and geometrical structures of a Ge
13
cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge
12
X clusters generally to classify the stable structures. This work explores the diverse doping positions and magnetic parameters on each isomer. The analysis indicates that the Ta, Fe, Pd and Co doped Ge
12
X with cuboctahedral and decahedral structures have the lowest energy structures, whereas Ge
13
mainly favors a cuboctahedral structure. The different doping atom positions contribute to strengthening the stability of the Ge
12
X cluster structures. Moreover, the Bader charge analysis of doped Ge
1
2
X reveals −0.3e accumulated for the dopant Ta as an electron donor in the cluster while other dopants tend to accept the electrons and the HOMO–LUMO gap is notably reduced. Density of states (DOS) analysis indicates that doped Ge
12
X is semimetallic and is capable of holding magnetism. In general, this work summarizes the relevance of inserting the doped atom at a strategic position on the Ge
11
X
2
cluster in finding the stable structure. |
doi_str_mv | 10.1007/s11664-023-10269-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2795897260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795897260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-18aec8c45f4e1b87af89ec0364a1165c4dd7395a79fe35e3bba6d0e300f455b83</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcBt1NNmqYPdzIvhUFdjOAupOnNtENtapJBxT9vxoruXF0OnO9czkHonJJLSkh25ShN0yQiMYsoidMiogdoRHkSZJ4-H6IRYSmNeMz4MTpxbksI5TSnI_S5rsFY8I2SLZ6_962x0jemw0bjabtzHiy-l52RVtWNB-VN1yh3jedaB-H2tpnpm26DJV4CZb_QW-NrvJYTvIAJfqwmWHYVnhrsa2t2mxrPFutTdKRl6-Ds547R02K-nt5Gq4fl3fRmFak4Iz40kKBylXCdAC3zTOq8ABUKJTK05iqpqowVXGaFBsaBlaVMKwKMEJ1wXuZsjC6G3N6a1x04L7ZmZ7vwUsRZwfMii1MSXPHgUtY4Z0GL3jYv0n4ISsR-ZDGMLMLI4ntkQQPEBsgFc7cB-xf9D_UFnwt-lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795897260</pqid></control><display><type>article</type><title>Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT</title><source>SpringerLink Journals - AutoHoldings</source><creator>Arunachalam, B. ; Manavalan, R. ; Gopalakrishnan, N.</creator><creatorcontrib>Arunachalam, B. ; Manavalan, R. ; Gopalakrishnan, N.</creatorcontrib><description>This article primarily explores the electronic properties and geometrical structures of a Ge
13
cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge
12
X clusters generally to classify the stable structures. This work explores the diverse doping positions and magnetic parameters on each isomer. The analysis indicates that the Ta, Fe, Pd and Co doped Ge
12
X with cuboctahedral and decahedral structures have the lowest energy structures, whereas Ge
13
mainly favors a cuboctahedral structure. The different doping atom positions contribute to strengthening the stability of the Ge
12
X cluster structures. Moreover, the Bader charge analysis of doped Ge
1
2
X reveals −0.3e accumulated for the dopant Ta as an electron donor in the cluster while other dopants tend to accept the electrons and the HOMO–LUMO gap is notably reduced. Density of states (DOS) analysis indicates that doped Ge
12
X is semimetallic and is capable of holding magnetism. In general, this work summarizes the relevance of inserting the doped atom at a strategic position on the Ge
11
X
2
cluster in finding the stable structure.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-023-10269-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Clusters ; Cobalt ; Density functional theory ; Density of states ; Dopants ; Doping ; Electronics and Microelectronics ; Electrons ; Energy ; Instrumentation ; Iron ; Isomers ; Magnetic properties ; Materials Science ; Molecular orbitals ; Optical and Electronic Materials ; Original Research Article ; Palladium ; Solid State Physics ; Stability analysis</subject><ispartof>Journal of electronic materials, 2023-05, Vol.52 (5), p.3018-3028</ispartof><rights>The Minerals, Metals & Materials Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-18aec8c45f4e1b87af89ec0364a1165c4dd7395a79fe35e3bba6d0e300f455b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-023-10269-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-023-10269-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Arunachalam, B.</creatorcontrib><creatorcontrib>Manavalan, R.</creatorcontrib><creatorcontrib>Gopalakrishnan, N.</creatorcontrib><title>Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>This article primarily explores the electronic properties and geometrical structures of a Ge
13
cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge
12
X clusters generally to classify the stable structures. This work explores the diverse doping positions and magnetic parameters on each isomer. The analysis indicates that the Ta, Fe, Pd and Co doped Ge
12
X with cuboctahedral and decahedral structures have the lowest energy structures, whereas Ge
13
mainly favors a cuboctahedral structure. The different doping atom positions contribute to strengthening the stability of the Ge
12
X cluster structures. Moreover, the Bader charge analysis of doped Ge
1
2
X reveals −0.3e accumulated for the dopant Ta as an electron donor in the cluster while other dopants tend to accept the electrons and the HOMO–LUMO gap is notably reduced. Density of states (DOS) analysis indicates that doped Ge
12
X is semimetallic and is capable of holding magnetism. In general, this work summarizes the relevance of inserting the doped atom at a strategic position on the Ge
11
X
2
cluster in finding the stable structure.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Clusters</subject><subject>Cobalt</subject><subject>Density functional theory</subject><subject>Density of states</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electronics and Microelectronics</subject><subject>Electrons</subject><subject>Energy</subject><subject>Instrumentation</subject><subject>Iron</subject><subject>Isomers</subject><subject>Magnetic properties</subject><subject>Materials Science</subject><subject>Molecular orbitals</subject><subject>Optical and Electronic Materials</subject><subject>Original Research Article</subject><subject>Palladium</subject><subject>Solid State Physics</subject><subject>Stability analysis</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcBt1NNmqYPdzIvhUFdjOAupOnNtENtapJBxT9vxoruXF0OnO9czkHonJJLSkh25ShN0yQiMYsoidMiogdoRHkSZJ4-H6IRYSmNeMz4MTpxbksI5TSnI_S5rsFY8I2SLZ6_962x0jemw0bjabtzHiy-l52RVtWNB-VN1yh3jedaB-H2tpnpm26DJV4CZb_QW-NrvJYTvIAJfqwmWHYVnhrsa2t2mxrPFutTdKRl6-Ds547R02K-nt5Gq4fl3fRmFak4Iz40kKBylXCdAC3zTOq8ABUKJTK05iqpqowVXGaFBsaBlaVMKwKMEJ1wXuZsjC6G3N6a1x04L7ZmZ7vwUsRZwfMii1MSXPHgUtY4Z0GL3jYv0n4ISsR-ZDGMLMLI4ntkQQPEBsgFc7cB-xf9D_UFnwt-lA</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Arunachalam, B.</creator><creator>Manavalan, R.</creator><creator>Gopalakrishnan, N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230501</creationdate><title>Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT</title><author>Arunachalam, B. ; Manavalan, R. ; Gopalakrishnan, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-18aec8c45f4e1b87af89ec0364a1165c4dd7395a79fe35e3bba6d0e300f455b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Clusters</topic><topic>Cobalt</topic><topic>Density functional theory</topic><topic>Density of states</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electronics and Microelectronics</topic><topic>Electrons</topic><topic>Energy</topic><topic>Instrumentation</topic><topic>Iron</topic><topic>Isomers</topic><topic>Magnetic properties</topic><topic>Materials Science</topic><topic>Molecular orbitals</topic><topic>Optical and Electronic Materials</topic><topic>Original Research Article</topic><topic>Palladium</topic><topic>Solid State Physics</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arunachalam, B.</creatorcontrib><creatorcontrib>Manavalan, R.</creatorcontrib><creatorcontrib>Gopalakrishnan, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arunachalam, B.</au><au>Manavalan, R.</au><au>Gopalakrishnan, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>52</volume><issue>5</issue><spage>3018</spage><epage>3028</epage><pages>3018-3028</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>This article primarily explores the electronic properties and geometrical structures of a Ge
13
cluster with single-atom doped X (Ta, Fe, Pd and Co) based on density functional theory (DFT). The spin-polarized exchange correlation functional was used to analyze the isomers of doped Ge
12
X clusters generally to classify the stable structures. This work explores the diverse doping positions and magnetic parameters on each isomer. The analysis indicates that the Ta, Fe, Pd and Co doped Ge
12
X with cuboctahedral and decahedral structures have the lowest energy structures, whereas Ge
13
mainly favors a cuboctahedral structure. The different doping atom positions contribute to strengthening the stability of the Ge
12
X cluster structures. Moreover, the Bader charge analysis of doped Ge
1
2
X reveals −0.3e accumulated for the dopant Ta as an electron donor in the cluster while other dopants tend to accept the electrons and the HOMO–LUMO gap is notably reduced. Density of states (DOS) analysis indicates that doped Ge
12
X is semimetallic and is capable of holding magnetism. In general, this work summarizes the relevance of inserting the doped atom at a strategic position on the Ge
11
X
2
cluster in finding the stable structure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-023-10269-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2023-05, Vol.52 (5), p.3018-3028 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2795897260 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Clusters Cobalt Density functional theory Density of states Dopants Doping Electronics and Microelectronics Electrons Energy Instrumentation Iron Isomers Magnetic properties Materials Science Molecular orbitals Optical and Electronic Materials Original Research Article Palladium Solid State Physics Stability analysis |
title | Theoretical Exploration of Cluster Nanoarchitectonics: Effects of Doping a Ge13 Cluster with Ta, Fe, Pd, and Co through DFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Exploration%20of%20Cluster%20Nanoarchitectonics:%20Effects%20of%20Doping%20a%20Ge13%20Cluster%20with%20Ta,%20Fe,%20Pd,%20and%20Co%20through%20DFT&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Arunachalam,%20B.&rft.date=2023-05-01&rft.volume=52&rft.issue=5&rft.spage=3018&rft.epage=3028&rft.pages=3018-3028&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-023-10269-1&rft_dat=%3Cproquest_cross%3E2795897260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795897260&rft_id=info:pmid/&rfr_iscdi=true |