Jumping Automata over Infinite Words

Jumping automata are finite automata that read their input in a non-consecutive manner, disregarding the order of the letters in the word. We introduce and study jumping automata over infinite words. Unlike the setting of finite words, which has been well studied, for infinite words it is not clear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Almagor, Shaull, Omer Yizhaq
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Almagor, Shaull
Omer Yizhaq
description Jumping automata are finite automata that read their input in a non-consecutive manner, disregarding the order of the letters in the word. We introduce and study jumping automata over infinite words. Unlike the setting of finite words, which has been well studied, for infinite words it is not clear how words can be reordered. To this end, we consider three semantics: automata that read the infinite word in some order so that no letter is overlooked, automata that can permute the word in windows of a given size k, and automata that can permute the word in windows of an existentially-quantified bound. We study expressiveness, closure properties and algorithmic properties of these models.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2795865604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795865604</sourcerecordid><originalsourceid>FETCH-proquest_journals_27958656043</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8SrNLcjMS1dwLC3Jz00sSVTIL0stUvDMS8vMyyxJVQjPL0op5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzS1MLM1MzAxNj4lQBAMtXLqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795865604</pqid></control><display><type>article</type><title>Jumping Automata over Infinite Words</title><source>Free E- Journals</source><creator>Almagor, Shaull ; Omer Yizhaq</creator><creatorcontrib>Almagor, Shaull ; Omer Yizhaq</creatorcontrib><description>Jumping automata are finite automata that read their input in a non-consecutive manner, disregarding the order of the letters in the word. We introduce and study jumping automata over infinite words. Unlike the setting of finite words, which has been well studied, for infinite words it is not clear how words can be reordered. To this end, we consider three semantics: automata that read the infinite word in some order so that no letter is overlooked, automata that can permute the word in windows of a given size k, and automata that can permute the word in windows of an existentially-quantified bound. We study expressiveness, closure properties and algorithmic properties of these models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automata theory ; Semantics ; Words (language)</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Almagor, Shaull</creatorcontrib><creatorcontrib>Omer Yizhaq</creatorcontrib><title>Jumping Automata over Infinite Words</title><title>arXiv.org</title><description>Jumping automata are finite automata that read their input in a non-consecutive manner, disregarding the order of the letters in the word. We introduce and study jumping automata over infinite words. Unlike the setting of finite words, which has been well studied, for infinite words it is not clear how words can be reordered. To this end, we consider three semantics: automata that read the infinite word in some order so that no letter is overlooked, automata that can permute the word in windows of a given size k, and automata that can permute the word in windows of an existentially-quantified bound. We study expressiveness, closure properties and algorithmic properties of these models.</description><subject>Automata theory</subject><subject>Semantics</subject><subject>Words (language)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8SrNLcjMS1dwLC3Jz00sSVTIL0stUvDMS8vMyyxJVQjPL0op5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNzS1MLM1MzAxNj4lQBAMtXLqg</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Almagor, Shaull</creator><creator>Omer Yizhaq</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230403</creationdate><title>Jumping Automata over Infinite Words</title><author>Almagor, Shaull ; Omer Yizhaq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27958656043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automata theory</topic><topic>Semantics</topic><topic>Words (language)</topic><toplevel>online_resources</toplevel><creatorcontrib>Almagor, Shaull</creatorcontrib><creatorcontrib>Omer Yizhaq</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almagor, Shaull</au><au>Omer Yizhaq</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Jumping Automata over Infinite Words</atitle><jtitle>arXiv.org</jtitle><date>2023-04-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Jumping automata are finite automata that read their input in a non-consecutive manner, disregarding the order of the letters in the word. We introduce and study jumping automata over infinite words. Unlike the setting of finite words, which has been well studied, for infinite words it is not clear how words can be reordered. To this end, we consider three semantics: automata that read the infinite word in some order so that no letter is overlooked, automata that can permute the word in windows of a given size k, and automata that can permute the word in windows of an existentially-quantified bound. We study expressiveness, closure properties and algorithmic properties of these models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2795865604
source Free E- Journals
subjects Automata theory
Semantics
Words (language)
title Jumping Automata over Infinite Words
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Jumping%20Automata%20over%20Infinite%20Words&rft.jtitle=arXiv.org&rft.au=Almagor,%20Shaull&rft.date=2023-04-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2795865604%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795865604&rft_id=info:pmid/&rfr_iscdi=true