Learning Decomposed Representations for Treatment Effect Estimation
In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-05, Vol.35 (5), p.4989-5001 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5001 |
---|---|
container_issue | 5 |
container_start_page | 4989 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Wu, Anpeng Yuan, Junkun Kuang, Kun Li, Bo Wu, Runze Zhu, Qiang Zhuang, Yueting Wu, Fei |
description | In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separation. In general, not all the observed pre-treatment variables are confounders that refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment (i.e., instrumental variables) and some only contribute to the outcome (i.e., adjustment variables). Balancing those non-confounders, including instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the different causal relations among observed pre-treatment variables, treatment variables and outcome variables, we propose a synergistic learning framework to i) separate confounders by learning decomposed representations of both confounders and non-confounders, ii) balance confounder with sample re-weighting technique, and simultaneously iii) estimate the treatment effect in observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines. |
doi_str_mv | 10.1109/TKDE.2022.3150807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2795804198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9712445</ieee_id><sourcerecordid>2795804198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9c25651565eae3a296f740fac87dab46479aa20f4a35669cbe48f58f97f6256f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEQx4MoWKsfQLwseN4178dR-lCxIMh6Dmk6kS12sybbg9_e1BYPwwzD_z-PH0K3BDeEYPPQvs4XDcWUNowIrLE6QxMihK4pMeS81JiTmjOuLtFVzluMsVaaTNBsBS71Xf9ZzcHH3RAzbKp3GBJk6Ec3drHPVYipahO4cVd61SIE8CXlsdv9Ca7RRXBfGW5OeYo-lot29lyv3p5eZo-r2jMmx9p4KqQgJcABc9TIoDgOzmu1cWsuuTLOURy4Y0JK49fAdRA6GBVkcQY2RffHuUOK33vIo93GferLSkuVEbq8aHRRkaPKp5hzgmCHVA5NP5Zge2BlD6zsgZU9sSqeu6OnA4B_vVGEci7YL0PDZPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795804198</pqid></control><display><type>article</type><title>Learning Decomposed Representations for Treatment Effect Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Anpeng ; Yuan, Junkun ; Kuang, Kun ; Li, Bo ; Wu, Runze ; Zhu, Qiang ; Zhuang, Yueting ; Wu, Fei</creator><creatorcontrib>Wu, Anpeng ; Yuan, Junkun ; Kuang, Kun ; Li, Bo ; Wu, Runze ; Zhu, Qiang ; Zhuang, Yueting ; Wu, Fei</creatorcontrib><description>In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separation. In general, not all the observed pre-treatment variables are confounders that refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment (i.e., instrumental variables) and some only contribute to the outcome (i.e., adjustment variables). Balancing those non-confounders, including instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the different causal relations among observed pre-treatment variables, treatment variables and outcome variables, we propose a synergistic learning framework to i) separate confounders by learning decomposed representations of both confounders and non-confounders, ii) balance confounder with sample re-weighting technique, and simultaneously iii) estimate the treatment effect in observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3150807</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Balancing ; confounder separation and balancing ; counterfactual inference ; decomposed representation ; Decomposition ; Drugs ; Estimation ; Germanium ; Instruments ; Learning ; Measurement ; Medical services ; Observational studies ; Pretreatment ; Reactive power ; Representations ; Separation ; Treatment effect</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4989-5001</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9c25651565eae3a296f740fac87dab46479aa20f4a35669cbe48f58f97f6256f3</citedby><cites>FETCH-LOGICAL-c336t-9c25651565eae3a296f740fac87dab46479aa20f4a35669cbe48f58f97f6256f3</cites><orcidid>0000-0003-3898-7122 ; 0000-0003-2139-8807 ; 0000-0002-6986-5825 ; 0000-0001-7024-9790 ; 0000-0003-0012-7397 ; 0000-0001-5599-8857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9712445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9712445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Anpeng</creatorcontrib><creatorcontrib>Yuan, Junkun</creatorcontrib><creatorcontrib>Kuang, Kun</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Wu, Runze</creatorcontrib><creatorcontrib>Zhu, Qiang</creatorcontrib><creatorcontrib>Zhuang, Yueting</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><title>Learning Decomposed Representations for Treatment Effect Estimation</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separation. In general, not all the observed pre-treatment variables are confounders that refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment (i.e., instrumental variables) and some only contribute to the outcome (i.e., adjustment variables). Balancing those non-confounders, including instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the different causal relations among observed pre-treatment variables, treatment variables and outcome variables, we propose a synergistic learning framework to i) separate confounders by learning decomposed representations of both confounders and non-confounders, ii) balance confounder with sample re-weighting technique, and simultaneously iii) estimate the treatment effect in observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines.</description><subject>Balancing</subject><subject>confounder separation and balancing</subject><subject>counterfactual inference</subject><subject>decomposed representation</subject><subject>Decomposition</subject><subject>Drugs</subject><subject>Estimation</subject><subject>Germanium</subject><subject>Instruments</subject><subject>Learning</subject><subject>Measurement</subject><subject>Medical services</subject><subject>Observational studies</subject><subject>Pretreatment</subject><subject>Reactive power</subject><subject>Representations</subject><subject>Separation</subject><subject>Treatment effect</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQx4MoWKsfQLwseN4178dR-lCxIMh6Dmk6kS12sybbg9_e1BYPwwzD_z-PH0K3BDeEYPPQvs4XDcWUNowIrLE6QxMihK4pMeS81JiTmjOuLtFVzluMsVaaTNBsBS71Xf9ZzcHH3RAzbKp3GBJk6Ec3drHPVYipahO4cVd61SIE8CXlsdv9Ca7RRXBfGW5OeYo-lot29lyv3p5eZo-r2jMmx9p4KqQgJcABc9TIoDgOzmu1cWsuuTLOURy4Y0JK49fAdRA6GBVkcQY2RffHuUOK33vIo93GferLSkuVEbq8aHRRkaPKp5hzgmCHVA5NP5Zge2BlD6zsgZU9sSqeu6OnA4B_vVGEci7YL0PDZPk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Wu, Anpeng</creator><creator>Yuan, Junkun</creator><creator>Kuang, Kun</creator><creator>Li, Bo</creator><creator>Wu, Runze</creator><creator>Zhu, Qiang</creator><creator>Zhuang, Yueting</creator><creator>Wu, Fei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3898-7122</orcidid><orcidid>https://orcid.org/0000-0003-2139-8807</orcidid><orcidid>https://orcid.org/0000-0002-6986-5825</orcidid><orcidid>https://orcid.org/0000-0001-7024-9790</orcidid><orcidid>https://orcid.org/0000-0003-0012-7397</orcidid><orcidid>https://orcid.org/0000-0001-5599-8857</orcidid></search><sort><creationdate>20230501</creationdate><title>Learning Decomposed Representations for Treatment Effect Estimation</title><author>Wu, Anpeng ; Yuan, Junkun ; Kuang, Kun ; Li, Bo ; Wu, Runze ; Zhu, Qiang ; Zhuang, Yueting ; Wu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9c25651565eae3a296f740fac87dab46479aa20f4a35669cbe48f58f97f6256f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Balancing</topic><topic>confounder separation and balancing</topic><topic>counterfactual inference</topic><topic>decomposed representation</topic><topic>Decomposition</topic><topic>Drugs</topic><topic>Estimation</topic><topic>Germanium</topic><topic>Instruments</topic><topic>Learning</topic><topic>Measurement</topic><topic>Medical services</topic><topic>Observational studies</topic><topic>Pretreatment</topic><topic>Reactive power</topic><topic>Representations</topic><topic>Separation</topic><topic>Treatment effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Anpeng</creatorcontrib><creatorcontrib>Yuan, Junkun</creatorcontrib><creatorcontrib>Kuang, Kun</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Wu, Runze</creatorcontrib><creatorcontrib>Zhu, Qiang</creatorcontrib><creatorcontrib>Zhuang, Yueting</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Anpeng</au><au>Yuan, Junkun</au><au>Kuang, Kun</au><au>Li, Bo</au><au>Wu, Runze</au><au>Zhu, Qiang</au><au>Zhuang, Yueting</au><au>Wu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Decomposed Representations for Treatment Effect Estimation</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>5</issue><spage>4989</spage><epage>5001</epage><pages>4989-5001</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separation. In general, not all the observed pre-treatment variables are confounders that refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment (i.e., instrumental variables) and some only contribute to the outcome (i.e., adjustment variables). Balancing those non-confounders, including instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the different causal relations among observed pre-treatment variables, treatment variables and outcome variables, we propose a synergistic learning framework to i) separate confounders by learning decomposed representations of both confounders and non-confounders, ii) balance confounder with sample re-weighting technique, and simultaneously iii) estimate the treatment effect in observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3150807</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3898-7122</orcidid><orcidid>https://orcid.org/0000-0003-2139-8807</orcidid><orcidid>https://orcid.org/0000-0002-6986-5825</orcidid><orcidid>https://orcid.org/0000-0001-7024-9790</orcidid><orcidid>https://orcid.org/0000-0003-0012-7397</orcidid><orcidid>https://orcid.org/0000-0001-5599-8857</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4989-5001 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_2795804198 |
source | IEEE Electronic Library (IEL) |
subjects | Balancing confounder separation and balancing counterfactual inference decomposed representation Decomposition Drugs Estimation Germanium Instruments Learning Measurement Medical services Observational studies Pretreatment Reactive power Representations Separation Treatment effect |
title | Learning Decomposed Representations for Treatment Effect Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Decomposed%20Representations%20for%20Treatment%20Effect%20Estimation&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wu,%20Anpeng&rft.date=2023-05-01&rft.volume=35&rft.issue=5&rft.spage=4989&rft.epage=5001&rft.pages=4989-5001&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3150807&rft_dat=%3Cproquest_RIE%3E2795804198%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795804198&rft_id=info:pmid/&rft_ieee_id=9712445&rfr_iscdi=true |