Learning Decomposed Representations for Treatment Effect Estimation

In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-05, Vol.35 (5), p.4989-5001
Hauptverfasser: Wu, Anpeng, Yuan, Junkun, Kuang, Kun, Li, Bo, Wu, Runze, Zhu, Qiang, Zhuang, Yueting, Wu, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5001
container_issue 5
container_start_page 4989
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Wu, Anpeng
Yuan, Junkun
Kuang, Kun
Li, Bo
Wu, Runze
Zhu, Qiang
Zhuang, Yueting
Wu, Fei
description In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separation. In general, not all the observed pre-treatment variables are confounders that refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment (i.e., instrumental variables) and some only contribute to the outcome (i.e., adjustment variables). Balancing those non-confounders, including instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the different causal relations among observed pre-treatment variables, treatment variables and outcome variables, we propose a synergistic learning framework to i) separate confounders by learning decomposed representations of both confounders and non-confounders, ii) balance confounder with sample re-weighting technique, and simultaneously iii) estimate the treatment effect in observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines.
doi_str_mv 10.1109/TKDE.2022.3150807
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2795804198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9712445</ieee_id><sourcerecordid>2795804198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9c25651565eae3a296f740fac87dab46479aa20f4a35669cbe48f58f97f6256f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEQx4MoWKsfQLwseN4178dR-lCxIMh6Dmk6kS12sybbg9_e1BYPwwzD_z-PH0K3BDeEYPPQvs4XDcWUNowIrLE6QxMihK4pMeS81JiTmjOuLtFVzluMsVaaTNBsBS71Xf9ZzcHH3RAzbKp3GBJk6Ec3drHPVYipahO4cVd61SIE8CXlsdv9Ca7RRXBfGW5OeYo-lot29lyv3p5eZo-r2jMmx9p4KqQgJcABc9TIoDgOzmu1cWsuuTLOURy4Y0JK49fAdRA6GBVkcQY2RffHuUOK33vIo93GferLSkuVEbq8aHRRkaPKp5hzgmCHVA5NP5Zge2BlD6zsgZU9sSqeu6OnA4B_vVGEci7YL0PDZPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795804198</pqid></control><display><type>article</type><title>Learning Decomposed Representations for Treatment Effect Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Anpeng ; Yuan, Junkun ; Kuang, Kun ; Li, Bo ; Wu, Runze ; Zhu, Qiang ; Zhuang, Yueting ; Wu, Fei</creator><creatorcontrib>Wu, Anpeng ; Yuan, Junkun ; Kuang, Kun ; Li, Bo ; Wu, Runze ; Zhu, Qiang ; Zhuang, Yueting ; Wu, Fei</creatorcontrib><description>In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separation. In general, not all the observed pre-treatment variables are confounders that refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment (i.e., instrumental variables) and some only contribute to the outcome (i.e., adjustment variables). Balancing those non-confounders, including instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the different causal relations among observed pre-treatment variables, treatment variables and outcome variables, we propose a synergistic learning framework to i) separate confounders by learning decomposed representations of both confounders and non-confounders, ii) balance confounder with sample re-weighting technique, and simultaneously iii) estimate the treatment effect in observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3150807</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Balancing ; confounder separation and balancing ; counterfactual inference ; decomposed representation ; Decomposition ; Drugs ; Estimation ; Germanium ; Instruments ; Learning ; Measurement ; Medical services ; Observational studies ; Pretreatment ; Reactive power ; Representations ; Separation ; Treatment effect</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4989-5001</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9c25651565eae3a296f740fac87dab46479aa20f4a35669cbe48f58f97f6256f3</citedby><cites>FETCH-LOGICAL-c336t-9c25651565eae3a296f740fac87dab46479aa20f4a35669cbe48f58f97f6256f3</cites><orcidid>0000-0003-3898-7122 ; 0000-0003-2139-8807 ; 0000-0002-6986-5825 ; 0000-0001-7024-9790 ; 0000-0003-0012-7397 ; 0000-0001-5599-8857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9712445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9712445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Anpeng</creatorcontrib><creatorcontrib>Yuan, Junkun</creatorcontrib><creatorcontrib>Kuang, Kun</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Wu, Runze</creatorcontrib><creatorcontrib>Zhu, Qiang</creatorcontrib><creatorcontrib>Zhuang, Yueting</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><title>Learning Decomposed Representations for Treatment Effect Estimation</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separation. In general, not all the observed pre-treatment variables are confounders that refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment (i.e., instrumental variables) and some only contribute to the outcome (i.e., adjustment variables). Balancing those non-confounders, including instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the different causal relations among observed pre-treatment variables, treatment variables and outcome variables, we propose a synergistic learning framework to i) separate confounders by learning decomposed representations of both confounders and non-confounders, ii) balance confounder with sample re-weighting technique, and simultaneously iii) estimate the treatment effect in observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines.</description><subject>Balancing</subject><subject>confounder separation and balancing</subject><subject>counterfactual inference</subject><subject>decomposed representation</subject><subject>Decomposition</subject><subject>Drugs</subject><subject>Estimation</subject><subject>Germanium</subject><subject>Instruments</subject><subject>Learning</subject><subject>Measurement</subject><subject>Medical services</subject><subject>Observational studies</subject><subject>Pretreatment</subject><subject>Reactive power</subject><subject>Representations</subject><subject>Separation</subject><subject>Treatment effect</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQx4MoWKsfQLwseN4178dR-lCxIMh6Dmk6kS12sybbg9_e1BYPwwzD_z-PH0K3BDeEYPPQvs4XDcWUNowIrLE6QxMihK4pMeS81JiTmjOuLtFVzluMsVaaTNBsBS71Xf9ZzcHH3RAzbKp3GBJk6Ec3drHPVYipahO4cVd61SIE8CXlsdv9Ca7RRXBfGW5OeYo-lot29lyv3p5eZo-r2jMmx9p4KqQgJcABc9TIoDgOzmu1cWsuuTLOURy4Y0JK49fAdRA6GBVkcQY2RffHuUOK33vIo93GferLSkuVEbq8aHRRkaPKp5hzgmCHVA5NP5Zge2BlD6zsgZU9sSqeu6OnA4B_vVGEci7YL0PDZPk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Wu, Anpeng</creator><creator>Yuan, Junkun</creator><creator>Kuang, Kun</creator><creator>Li, Bo</creator><creator>Wu, Runze</creator><creator>Zhu, Qiang</creator><creator>Zhuang, Yueting</creator><creator>Wu, Fei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3898-7122</orcidid><orcidid>https://orcid.org/0000-0003-2139-8807</orcidid><orcidid>https://orcid.org/0000-0002-6986-5825</orcidid><orcidid>https://orcid.org/0000-0001-7024-9790</orcidid><orcidid>https://orcid.org/0000-0003-0012-7397</orcidid><orcidid>https://orcid.org/0000-0001-5599-8857</orcidid></search><sort><creationdate>20230501</creationdate><title>Learning Decomposed Representations for Treatment Effect Estimation</title><author>Wu, Anpeng ; Yuan, Junkun ; Kuang, Kun ; Li, Bo ; Wu, Runze ; Zhu, Qiang ; Zhuang, Yueting ; Wu, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9c25651565eae3a296f740fac87dab46479aa20f4a35669cbe48f58f97f6256f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Balancing</topic><topic>confounder separation and balancing</topic><topic>counterfactual inference</topic><topic>decomposed representation</topic><topic>Decomposition</topic><topic>Drugs</topic><topic>Estimation</topic><topic>Germanium</topic><topic>Instruments</topic><topic>Learning</topic><topic>Measurement</topic><topic>Medical services</topic><topic>Observational studies</topic><topic>Pretreatment</topic><topic>Reactive power</topic><topic>Representations</topic><topic>Separation</topic><topic>Treatment effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Anpeng</creatorcontrib><creatorcontrib>Yuan, Junkun</creatorcontrib><creatorcontrib>Kuang, Kun</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Wu, Runze</creatorcontrib><creatorcontrib>Zhu, Qiang</creatorcontrib><creatorcontrib>Zhuang, Yueting</creatorcontrib><creatorcontrib>Wu, Fei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Anpeng</au><au>Yuan, Junkun</au><au>Kuang, Kun</au><au>Li, Bo</au><au>Wu, Runze</au><au>Zhu, Qiang</au><au>Zhuang, Yueting</au><au>Wu, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Decomposed Representations for Treatment Effect Estimation</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>5</issue><spage>4989</spage><epage>5001</epage><pages>4989-5001</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>In observational studies, confounder separation and balancing are the fundamental problems of treatment effect estimation. Most of the previous methods focused on addressing the problem of confounder balancing by treating all observed pre-treatment variables as confounders, ignoring confounder separation. In general, not all the observed pre-treatment variables are confounders that refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment (i.e., instrumental variables) and some only contribute to the outcome (i.e., adjustment variables). Balancing those non-confounders, including instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the different causal relations among observed pre-treatment variables, treatment variables and outcome variables, we propose a synergistic learning framework to i) separate confounders by learning decomposed representations of both confounders and non-confounders, ii) balance confounder with sample re-weighting technique, and simultaneously iii) estimate the treatment effect in observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3150807</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3898-7122</orcidid><orcidid>https://orcid.org/0000-0003-2139-8807</orcidid><orcidid>https://orcid.org/0000-0002-6986-5825</orcidid><orcidid>https://orcid.org/0000-0001-7024-9790</orcidid><orcidid>https://orcid.org/0000-0003-0012-7397</orcidid><orcidid>https://orcid.org/0000-0001-5599-8857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4989-5001
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_2795804198
source IEEE Electronic Library (IEL)
subjects Balancing
confounder separation and balancing
counterfactual inference
decomposed representation
Decomposition
Drugs
Estimation
Germanium
Instruments
Learning
Measurement
Medical services
Observational studies
Pretreatment
Reactive power
Representations
Separation
Treatment effect
title Learning Decomposed Representations for Treatment Effect Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Decomposed%20Representations%20for%20Treatment%20Effect%20Estimation&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wu,%20Anpeng&rft.date=2023-05-01&rft.volume=35&rft.issue=5&rft.spage=4989&rft.epage=5001&rft.pages=4989-5001&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3150807&rft_dat=%3Cproquest_RIE%3E2795804198%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795804198&rft_id=info:pmid/&rft_ieee_id=9712445&rfr_iscdi=true