Synthetic Robust Model Predictive Control with Input Mapping for Constrained Visual Servoing
This paper proposes a synthetic robust model predictive control method with input mapping for the image-based visual servoing problem with constraints, where the novel control law is constructed by the robust control law designed offline and the online linear compensation of the past data. This prop...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2023-09, Vol.70 (9), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 70 |
creator | He, Shaoying Xu, Yunwen Guan, Yaonan Li, Dewei Xi, Yugeng |
description | This paper proposes a synthetic robust model predictive control method with input mapping for the image-based visual servoing problem with constraints, where the novel control law is constructed by the robust control law designed offline and the online linear compensation of the past data. This proposed method can overcome the conservatism of robust model predictive control and reduce the online computational burden. The input mapping method is suitable for the image-based visual servoing system with no requirement of the slow time-varying model or time-invariant model as most adaptive control methods need. Its linear combination coefficients can be online optimized by solving a quadratic programming problem. The stability of the visual servoing system under our proposed method is proven, and its convergence speed is demonstrated to be faster than the traditional robust model predictive control. A real-time experiment on a six-degree-of-freedom manipulator with eye-in-hand construction is designed to evaluate the proposed method. The results indicate that besides the ability to handle the constraint and the singularity problem, our proposed method provides a faster convergence rate than several classic robust control methods, and improves the computational efficiency by an order of magnitude compared with the online robust predictive control method. |
doi_str_mv | 10.1109/TIE.2022.3212411 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2795803163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9917364</ieee_id><sourcerecordid>2795803163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-12260c95aa668066990f5f86df7a1d43513d1653030978ad2c66dbfefb4692023</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMsslujlKqFiqKrZ6EJd0kNqVu1iRb6b93S4unOXzvm2EeQtdARgBE3i2mkxEllI4YBZoDnKABcF5kUublKRoQWpQZIbk4RxcxrgmBnAMfoM_5rkkrk1yN3_yyiwk_e202-DUY7erktgaPfZOC3-Bfl1Z42rRdz6i2dc0Xtj7s45iCco3R-MPFTm3w3ISt7_NLdGbVJpqr4xyi94fJYvyUzV4ep-P7WVZTCSkDSgWpJVdKiJIIISWx3JZC20KBzhkHpkFwRhiRRak0rYXQS2vsMhey_5kN0e1hbxv8T2diqta-C01_sqKF5CVhIFhPkQNVBx9jMLZqg_tWYVcBqfYOq95htXdYHR32lZtDxRlj_nEpoWAiZ3_kJmyS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795803163</pqid></control><display><type>article</type><title>Synthetic Robust Model Predictive Control with Input Mapping for Constrained Visual Servoing</title><source>IEEE Electronic Library (IEL)</source><creator>He, Shaoying ; Xu, Yunwen ; Guan, Yaonan ; Li, Dewei ; Xi, Yugeng</creator><creatorcontrib>He, Shaoying ; Xu, Yunwen ; Guan, Yaonan ; Li, Dewei ; Xi, Yugeng</creatorcontrib><description>This paper proposes a synthetic robust model predictive control method with input mapping for the image-based visual servoing problem with constraints, where the novel control law is constructed by the robust control law designed offline and the online linear compensation of the past data. This proposed method can overcome the conservatism of robust model predictive control and reduce the online computational burden. The input mapping method is suitable for the image-based visual servoing system with no requirement of the slow time-varying model or time-invariant model as most adaptive control methods need. Its linear combination coefficients can be online optimized by solving a quadratic programming problem. The stability of the visual servoing system under our proposed method is proven, and its convergence speed is demonstrated to be faster than the traditional robust model predictive control. A real-time experiment on a six-degree-of-freedom manipulator with eye-in-hand construction is designed to evaluate the proposed method. The results indicate that besides the ability to handle the constraint and the singularity problem, our proposed method provides a faster convergence rate than several classic robust control methods, and improves the computational efficiency by an order of magnitude compared with the online robust predictive control method.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2022.3212411</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Computational modeling ; constraint problem ; Constraints ; Control methods ; Control theory ; Convergence ; Image-based visual servoing ; input mapping method ; Jacobian matrices ; Mapping ; Predictive control ; Predictive models ; Quadratic programming ; Robust control ; robust model predictive control ; Uncertainty ; Visual servoing</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-09, Vol.70 (9), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-12260c95aa668066990f5f86df7a1d43513d1653030978ad2c66dbfefb4692023</citedby><cites>FETCH-LOGICAL-c291t-12260c95aa668066990f5f86df7a1d43513d1653030978ad2c66dbfefb4692023</cites><orcidid>0000-0001-5165-3026 ; 0000-0001-8869-5676 ; 0000-0001-7555-7792 ; 0000-0002-0604-7518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9917364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9917364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Shaoying</creatorcontrib><creatorcontrib>Xu, Yunwen</creatorcontrib><creatorcontrib>Guan, Yaonan</creatorcontrib><creatorcontrib>Li, Dewei</creatorcontrib><creatorcontrib>Xi, Yugeng</creatorcontrib><title>Synthetic Robust Model Predictive Control with Input Mapping for Constrained Visual Servoing</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This paper proposes a synthetic robust model predictive control method with input mapping for the image-based visual servoing problem with constraints, where the novel control law is constructed by the robust control law designed offline and the online linear compensation of the past data. This proposed method can overcome the conservatism of robust model predictive control and reduce the online computational burden. The input mapping method is suitable for the image-based visual servoing system with no requirement of the slow time-varying model or time-invariant model as most adaptive control methods need. Its linear combination coefficients can be online optimized by solving a quadratic programming problem. The stability of the visual servoing system under our proposed method is proven, and its convergence speed is demonstrated to be faster than the traditional robust model predictive control. A real-time experiment on a six-degree-of-freedom manipulator with eye-in-hand construction is designed to evaluate the proposed method. The results indicate that besides the ability to handle the constraint and the singularity problem, our proposed method provides a faster convergence rate than several classic robust control methods, and improves the computational efficiency by an order of magnitude compared with the online robust predictive control method.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Computational modeling</subject><subject>constraint problem</subject><subject>Constraints</subject><subject>Control methods</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Image-based visual servoing</subject><subject>input mapping method</subject><subject>Jacobian matrices</subject><subject>Mapping</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Quadratic programming</subject><subject>Robust control</subject><subject>robust model predictive control</subject><subject>Uncertainty</subject><subject>Visual servoing</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89ZMsslujlKqFiqKrZ6EJd0kNqVu1iRb6b93S4unOXzvm2EeQtdARgBE3i2mkxEllI4YBZoDnKABcF5kUublKRoQWpQZIbk4RxcxrgmBnAMfoM_5rkkrk1yN3_yyiwk_e202-DUY7erktgaPfZOC3-Bfl1Z42rRdz6i2dc0Xtj7s45iCco3R-MPFTm3w3ISt7_NLdGbVJpqr4xyi94fJYvyUzV4ep-P7WVZTCSkDSgWpJVdKiJIIISWx3JZC20KBzhkHpkFwRhiRRak0rYXQS2vsMhey_5kN0e1hbxv8T2diqta-C01_sqKF5CVhIFhPkQNVBx9jMLZqg_tWYVcBqfYOq95htXdYHR32lZtDxRlj_nEpoWAiZ3_kJmyS</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>He, Shaoying</creator><creator>Xu, Yunwen</creator><creator>Guan, Yaonan</creator><creator>Li, Dewei</creator><creator>Xi, Yugeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5165-3026</orcidid><orcidid>https://orcid.org/0000-0001-8869-5676</orcidid><orcidid>https://orcid.org/0000-0001-7555-7792</orcidid><orcidid>https://orcid.org/0000-0002-0604-7518</orcidid></search><sort><creationdate>20230901</creationdate><title>Synthetic Robust Model Predictive Control with Input Mapping for Constrained Visual Servoing</title><author>He, Shaoying ; Xu, Yunwen ; Guan, Yaonan ; Li, Dewei ; Xi, Yugeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-12260c95aa668066990f5f86df7a1d43513d1653030978ad2c66dbfefb4692023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Computational modeling</topic><topic>constraint problem</topic><topic>Constraints</topic><topic>Control methods</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Image-based visual servoing</topic><topic>input mapping method</topic><topic>Jacobian matrices</topic><topic>Mapping</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Quadratic programming</topic><topic>Robust control</topic><topic>robust model predictive control</topic><topic>Uncertainty</topic><topic>Visual servoing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Shaoying</creatorcontrib><creatorcontrib>Xu, Yunwen</creatorcontrib><creatorcontrib>Guan, Yaonan</creatorcontrib><creatorcontrib>Li, Dewei</creatorcontrib><creatorcontrib>Xi, Yugeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Shaoying</au><au>Xu, Yunwen</au><au>Guan, Yaonan</au><au>Li, Dewei</au><au>Xi, Yugeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Robust Model Predictive Control with Input Mapping for Constrained Visual Servoing</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>70</volume><issue>9</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This paper proposes a synthetic robust model predictive control method with input mapping for the image-based visual servoing problem with constraints, where the novel control law is constructed by the robust control law designed offline and the online linear compensation of the past data. This proposed method can overcome the conservatism of robust model predictive control and reduce the online computational burden. The input mapping method is suitable for the image-based visual servoing system with no requirement of the slow time-varying model or time-invariant model as most adaptive control methods need. Its linear combination coefficients can be online optimized by solving a quadratic programming problem. The stability of the visual servoing system under our proposed method is proven, and its convergence speed is demonstrated to be faster than the traditional robust model predictive control. A real-time experiment on a six-degree-of-freedom manipulator with eye-in-hand construction is designed to evaluate the proposed method. The results indicate that besides the ability to handle the constraint and the singularity problem, our proposed method provides a faster convergence rate than several classic robust control methods, and improves the computational efficiency by an order of magnitude compared with the online robust predictive control method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2022.3212411</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5165-3026</orcidid><orcidid>https://orcid.org/0000-0001-8869-5676</orcidid><orcidid>https://orcid.org/0000-0001-7555-7792</orcidid><orcidid>https://orcid.org/0000-0002-0604-7518</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2023-09, Vol.70 (9), p.1-10 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2795803163 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive control Computational modeling constraint problem Constraints Control methods Control theory Convergence Image-based visual servoing input mapping method Jacobian matrices Mapping Predictive control Predictive models Quadratic programming Robust control robust model predictive control Uncertainty Visual servoing |
title | Synthetic Robust Model Predictive Control with Input Mapping for Constrained Visual Servoing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Robust%20Model%20Predictive%20Control%20with%20Input%20Mapping%20for%20Constrained%20Visual%20Servoing&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=He,%20Shaoying&rft.date=2023-09-01&rft.volume=70&rft.issue=9&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2022.3212411&rft_dat=%3Cproquest_RIE%3E2795803163%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795803163&rft_id=info:pmid/&rft_ieee_id=9917364&rfr_iscdi=true |