Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution

This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2023-05, Vol.35 (5), p.4908-4922
Hauptverfasser: Dai, Quanyu, Wu, Xiao-Ming, Xiao, Jiaren, Shen, Xiao, Wang, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4922
container_issue 5
container_start_page 4908
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Dai, Quanyu
Wu, Xiao-Ming
Xiao, Jiaren
Shen, Xiao
Wang, Dan
description This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are inapplicable for this problem. To tackle this problem, we propose a novel graph transfer learning framework AdaGCN by leveraging the techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between the source and target domains.
doi_str_mv 10.1109/TKDE.2022.3144250
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2795803085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9684927</ieee_id><sourcerecordid>2795803085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-71b454a0e3757fc2fcb0ebc3a3f8d668967f104a92c899dc257bf27f46cb911a3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwseN6av5vkWNpaxYIeKh7DbJrYlHZ3TbYFv727bPE0w-O9mccPoXuCJ4Rg_bR-my8mFFM6YYRzKvAFGhEhVE6JJpfdjjnJOePyGt2ktMMYK6nICH0sIzTbbB2hSt7FbOUgVqH6zk4Bsunm5GKCGGCfzesDhKqToGmhDXWVfYV2mw3xWV2d6v2xl2_RlYd9cnfnOUafz4v17CVfvS9fZ9NVbhkr2lySkgsO2DEppLfU2xK70jJgXm2KQulC-q4zaGqV1htLhSw9lZ4XttSEABujx-FuE-ufo0ut2dXHWHUvDZVaKMywEp2LDC4b65Si86aJ4QDx1xBsenCmB2d6cOYMrss8DJngnPv360JxTSX7A_kSaW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795803085</pqid></control><display><type>article</type><title>Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Quanyu ; Wu, Xiao-Ming ; Xiao, Jiaren ; Shen, Xiao ; Wang, Dan</creator><creatorcontrib>Dai, Quanyu ; Wu, Xiao-Ming ; Xiao, Jiaren ; Shen, Xiao ; Wang, Dan</creatorcontrib><description>This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are inapplicable for this problem. To tackle this problem, we propose a novel graph transfer learning framework AdaGCN by leveraging the techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between the source and target domains.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3144250</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; adversarial learning ; Classification ; Convolution ; domain adaptation ; Domains ; graph convolution ; Graph/nework transfer learning ; Knowledge engineering ; Knowledge management ; Knowledge transfer ; node classification ; Nodes ; Proteins ; Semi-supervised learning ; Task analysis ; Transfer learning</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4908-4922</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-71b454a0e3757fc2fcb0ebc3a3f8d668967f104a92c899dc257bf27f46cb911a3</citedby><cites>FETCH-LOGICAL-c336t-71b454a0e3757fc2fcb0ebc3a3f8d668967f104a92c899dc257bf27f46cb911a3</cites><orcidid>0000-0001-7649-4682 ; 0000-0001-7578-2738 ; 0000-0003-0937-049X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9684927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9684927$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Quanyu</creatorcontrib><creatorcontrib>Wu, Xiao-Ming</creatorcontrib><creatorcontrib>Xiao, Jiaren</creatorcontrib><creatorcontrib>Shen, Xiao</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><title>Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are inapplicable for this problem. To tackle this problem, we propose a novel graph transfer learning framework AdaGCN by leveraging the techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between the source and target domains.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>adversarial learning</subject><subject>Classification</subject><subject>Convolution</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>graph convolution</subject><subject>Graph/nework transfer learning</subject><subject>Knowledge engineering</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>node classification</subject><subject>Nodes</subject><subject>Proteins</subject><subject>Semi-supervised learning</subject><subject>Task analysis</subject><subject>Transfer learning</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwseN6av5vkWNpaxYIeKh7DbJrYlHZ3TbYFv727bPE0w-O9mccPoXuCJ4Rg_bR-my8mFFM6YYRzKvAFGhEhVE6JJpfdjjnJOePyGt2ktMMYK6nICH0sIzTbbB2hSt7FbOUgVqH6zk4Bsunm5GKCGGCfzesDhKqToGmhDXWVfYV2mw3xWV2d6v2xl2_RlYd9cnfnOUafz4v17CVfvS9fZ9NVbhkr2lySkgsO2DEppLfU2xK70jJgXm2KQulC-q4zaGqV1htLhSw9lZ4XttSEABujx-FuE-ufo0ut2dXHWHUvDZVaKMywEp2LDC4b65Si86aJ4QDx1xBsenCmB2d6cOYMrss8DJngnPv360JxTSX7A_kSaW4</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Dai, Quanyu</creator><creator>Wu, Xiao-Ming</creator><creator>Xiao, Jiaren</creator><creator>Shen, Xiao</creator><creator>Wang, Dan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7649-4682</orcidid><orcidid>https://orcid.org/0000-0001-7578-2738</orcidid><orcidid>https://orcid.org/0000-0003-0937-049X</orcidid></search><sort><creationdate>20230501</creationdate><title>Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution</title><author>Dai, Quanyu ; Wu, Xiao-Ming ; Xiao, Jiaren ; Shen, Xiao ; Wang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-71b454a0e3757fc2fcb0ebc3a3f8d668967f104a92c899dc257bf27f46cb911a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>adversarial learning</topic><topic>Classification</topic><topic>Convolution</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>graph convolution</topic><topic>Graph/nework transfer learning</topic><topic>Knowledge engineering</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>node classification</topic><topic>Nodes</topic><topic>Proteins</topic><topic>Semi-supervised learning</topic><topic>Task analysis</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Quanyu</creatorcontrib><creatorcontrib>Wu, Xiao-Ming</creatorcontrib><creatorcontrib>Xiao, Jiaren</creatorcontrib><creatorcontrib>Shen, Xiao</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Quanyu</au><au>Wu, Xiao-Ming</au><au>Xiao, Jiaren</au><au>Shen, Xiao</au><au>Wang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>5</issue><spage>4908</spage><epage>4922</epage><pages>4908-4922</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are inapplicable for this problem. To tackle this problem, we propose a novel graph transfer learning framework AdaGCN by leveraging the techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between the source and target domains.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3144250</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7649-4682</orcidid><orcidid>https://orcid.org/0000-0001-7578-2738</orcidid><orcidid>https://orcid.org/0000-0003-0937-049X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4908-4922
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_2795803085
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation models
adversarial learning
Classification
Convolution
domain adaptation
Domains
graph convolution
Graph/nework transfer learning
Knowledge engineering
Knowledge management
Knowledge transfer
node classification
Nodes
Proteins
Semi-supervised learning
Task analysis
Transfer learning
title Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Transfer%20Learning%20via%20Adversarial%20Domain%20Adaptation%20With%20Graph%20Convolution&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Dai,%20Quanyu&rft.date=2023-05-01&rft.volume=35&rft.issue=5&rft.spage=4908&rft.epage=4922&rft.pages=4908-4922&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3144250&rft_dat=%3Cproquest_RIE%3E2795803085%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795803085&rft_id=info:pmid/&rft_ieee_id=9684927&rfr_iscdi=true