Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution
This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target n...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2023-05, Vol.35 (5), p.4908-4922 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4922 |
---|---|
container_issue | 5 |
container_start_page | 4908 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Dai, Quanyu Wu, Xiao-Ming Xiao, Jiaren Shen, Xiao Wang, Dan |
description | This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are inapplicable for this problem. To tackle this problem, we propose a novel graph transfer learning framework AdaGCN by leveraging the techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between the source and target domains. |
doi_str_mv | 10.1109/TKDE.2022.3144250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2795803085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9684927</ieee_id><sourcerecordid>2795803085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-71b454a0e3757fc2fcb0ebc3a3f8d668967f104a92c899dc257bf27f46cb911a3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwseN6av5vkWNpaxYIeKh7DbJrYlHZ3TbYFv727bPE0w-O9mccPoXuCJ4Rg_bR-my8mFFM6YYRzKvAFGhEhVE6JJpfdjjnJOePyGt2ktMMYK6nICH0sIzTbbB2hSt7FbOUgVqH6zk4Bsunm5GKCGGCfzesDhKqToGmhDXWVfYV2mw3xWV2d6v2xl2_RlYd9cnfnOUafz4v17CVfvS9fZ9NVbhkr2lySkgsO2DEppLfU2xK70jJgXm2KQulC-q4zaGqV1htLhSw9lZ4XttSEABujx-FuE-ufo0ut2dXHWHUvDZVaKMywEp2LDC4b65Si86aJ4QDx1xBsenCmB2d6cOYMrss8DJngnPv360JxTSX7A_kSaW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795803085</pqid></control><display><type>article</type><title>Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution</title><source>IEEE Electronic Library (IEL)</source><creator>Dai, Quanyu ; Wu, Xiao-Ming ; Xiao, Jiaren ; Shen, Xiao ; Wang, Dan</creator><creatorcontrib>Dai, Quanyu ; Wu, Xiao-Ming ; Xiao, Jiaren ; Shen, Xiao ; Wang, Dan</creatorcontrib><description>This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are inapplicable for this problem. To tackle this problem, we propose a novel graph transfer learning framework AdaGCN by leveraging the techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between the source and target domains.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2022.3144250</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; adversarial learning ; Classification ; Convolution ; domain adaptation ; Domains ; graph convolution ; Graph/nework transfer learning ; Knowledge engineering ; Knowledge management ; Knowledge transfer ; node classification ; Nodes ; Proteins ; Semi-supervised learning ; Task analysis ; Transfer learning</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4908-4922</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-71b454a0e3757fc2fcb0ebc3a3f8d668967f104a92c899dc257bf27f46cb911a3</citedby><cites>FETCH-LOGICAL-c336t-71b454a0e3757fc2fcb0ebc3a3f8d668967f104a92c899dc257bf27f46cb911a3</cites><orcidid>0000-0001-7649-4682 ; 0000-0001-7578-2738 ; 0000-0003-0937-049X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9684927$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9684927$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dai, Quanyu</creatorcontrib><creatorcontrib>Wu, Xiao-Ming</creatorcontrib><creatorcontrib>Xiao, Jiaren</creatorcontrib><creatorcontrib>Shen, Xiao</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><title>Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are inapplicable for this problem. To tackle this problem, we propose a novel graph transfer learning framework AdaGCN by leveraging the techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between the source and target domains.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>adversarial learning</subject><subject>Classification</subject><subject>Convolution</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>graph convolution</subject><subject>Graph/nework transfer learning</subject><subject>Knowledge engineering</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>node classification</subject><subject>Nodes</subject><subject>Proteins</subject><subject>Semi-supervised learning</subject><subject>Task analysis</subject><subject>Transfer learning</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwseN6av5vkWNpaxYIeKh7DbJrYlHZ3TbYFv727bPE0w-O9mccPoXuCJ4Rg_bR-my8mFFM6YYRzKvAFGhEhVE6JJpfdjjnJOePyGt2ktMMYK6nICH0sIzTbbB2hSt7FbOUgVqH6zk4Bsunm5GKCGGCfzesDhKqToGmhDXWVfYV2mw3xWV2d6v2xl2_RlYd9cnfnOUafz4v17CVfvS9fZ9NVbhkr2lySkgsO2DEppLfU2xK70jJgXm2KQulC-q4zaGqV1htLhSw9lZ4XttSEABujx-FuE-ufo0ut2dXHWHUvDZVaKMywEp2LDC4b65Si86aJ4QDx1xBsenCmB2d6cOYMrss8DJngnPv360JxTSX7A_kSaW4</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Dai, Quanyu</creator><creator>Wu, Xiao-Ming</creator><creator>Xiao, Jiaren</creator><creator>Shen, Xiao</creator><creator>Wang, Dan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7649-4682</orcidid><orcidid>https://orcid.org/0000-0001-7578-2738</orcidid><orcidid>https://orcid.org/0000-0003-0937-049X</orcidid></search><sort><creationdate>20230501</creationdate><title>Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution</title><author>Dai, Quanyu ; Wu, Xiao-Ming ; Xiao, Jiaren ; Shen, Xiao ; Wang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-71b454a0e3757fc2fcb0ebc3a3f8d668967f104a92c899dc257bf27f46cb911a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>adversarial learning</topic><topic>Classification</topic><topic>Convolution</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>graph convolution</topic><topic>Graph/nework transfer learning</topic><topic>Knowledge engineering</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>node classification</topic><topic>Nodes</topic><topic>Proteins</topic><topic>Semi-supervised learning</topic><topic>Task analysis</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Quanyu</creatorcontrib><creatorcontrib>Wu, Xiao-Ming</creatorcontrib><creatorcontrib>Xiao, Jiaren</creatorcontrib><creatorcontrib>Shen, Xiao</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dai, Quanyu</au><au>Wu, Xiao-Ming</au><au>Xiao, Jiaren</au><au>Shen, Xiao</au><au>Wang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>5</issue><spage>4908</spage><epage>4922</epage><pages>4908-4922</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>This paper studies the problem of cross-network node classification to overcome the insufficiency of labeled data in a single network. It aims to leverage the label information in a partially labeled source network to assist node classification in a completely unlabeled or partially labeled target network. Existing methods for single network learning cannot solve this problem due to the domain shift across networks. Some multi-network learning methods heavily rely on the existence of cross-network connections, thus are inapplicable for this problem. To tackle this problem, we propose a novel graph transfer learning framework AdaGCN by leveraging the techniques of adversarial domain adaptation and graph convolution. It consists of two components: a semi-supervised learning component and an adversarial domain adaptation component. The former aims to learn class discriminative node representations with given label information of the source and target networks, while the latter contributes to mitigating the distribution divergence between the source and target domains to facilitate knowledge transfer. Extensive empirical evaluations on real-world datasets show that AdaGCN can successfully transfer class information with a low label rate on the source network and a substantial divergence between the source and target domains.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2022.3144250</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7649-4682</orcidid><orcidid>https://orcid.org/0000-0001-7578-2738</orcidid><orcidid>https://orcid.org/0000-0003-0937-049X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-05, Vol.35 (5), p.4908-4922 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_2795803085 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Adaptation models adversarial learning Classification Convolution domain adaptation Domains graph convolution Graph/nework transfer learning Knowledge engineering Knowledge management Knowledge transfer node classification Nodes Proteins Semi-supervised learning Task analysis Transfer learning |
title | Graph Transfer Learning via Adversarial Domain Adaptation With Graph Convolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Transfer%20Learning%20via%20Adversarial%20Domain%20Adaptation%20With%20Graph%20Convolution&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Dai,%20Quanyu&rft.date=2023-05-01&rft.volume=35&rft.issue=5&rft.spage=4908&rft.epage=4922&rft.pages=4908-4922&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2022.3144250&rft_dat=%3Cproquest_RIE%3E2795803085%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795803085&rft_id=info:pmid/&rft_ieee_id=9684927&rfr_iscdi=true |