Depth Restoration in Under-Display Time-of-Flight Imaging

Under-display imaging has recently received considerable attention in both academia and industry. As a variation of this technique, under-display ToF (UD-ToF) cameras enable depth sensing for full-screen devices. However, it also brings problems of image blurring, signal-to-noise ratio and ranging a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-05, Vol.45 (5), p.5668-5683
Hauptverfasser: Qiao, Xin, Ge, Chenyang, Deng, Pengchao, Wei, Hao, Poggi, Matteo, Mattoccia, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5683
container_issue 5
container_start_page 5668
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Qiao, Xin
Ge, Chenyang
Deng, Pengchao
Wei, Hao
Poggi, Matteo
Mattoccia, Stefano
description Under-display imaging has recently received considerable attention in both academia and industry. As a variation of this technique, under-display ToF (UD-ToF) cameras enable depth sensing for full-screen devices. However, it also brings problems of image blurring, signal-to-noise ratio and ranging accuracy reduction. To address these issues, we propose a cascaded deep network to improve the quality of UD-ToF depth maps. The network comprises two subnets, with the first using a complex-valued network in raw domain to perform denoising, deblurring and raw measurements enhancement jointly, while the second refining depth maps in depth domain based on the proposed multi-scale depth enhancement block (MSDEB). To enable training, we establish a data acquisition device and construct a real UD-ToF dataset by collecting real paired ToF raw data. Besides, we also build a large-scale synthetic UD-ToF dataset through noise analysis. The quantitative and qualitative evaluation results on public datasets and ours demonstrate that the presented network outperforms state-of-the-art algorithms and can further promote full-screen devices in practical applications.
doi_str_mv 10.1109/TPAMI.2022.3209905
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2795778845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9903562</ieee_id><sourcerecordid>2795778845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-8251cb10066f0482f4948caf8642218e3ea63d7631f37a412012f166812e12543</originalsourceid><addsrcrecordid>eNpdkEtPwkAUhSdGI4j-AU1MEzduinPvPDqzNCBKgtEYWDdDmcKQvuy0C_69RZCFq7u43zk5-Qi5BToEoPpp_vn8Ph0iRRwypFpTcUb6oJkOmWD6nPQpSAyVQtUjV95vKQUuKLskPSZBCB5FfaLHtmo2wZf1TVmbxpVF4IpgUaxsHY6drzKzC-Yut2GZhpPMrTdNMM3N2hXra3KRmszbm-MdkMXkZT56C2cfr9PR8yxMmBZNqFBAsgRKpUwpV5hyzVViUiU5IijLrJFsFUkGKYsMB6SAKUipAC2g4GxAHg-9VV1-t93OOHc-sVlmClu2PsYIlGQRBdGhD__QbdnWRbeuo7SIIqX4nsIDldSl97VN46p2ual3MdB4Lzb-FRvvxcZHsV3o_ljdLnO7OkX-THbA3QFw1trTu8syIZH9ANv7eI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795778845</pqid></control><display><type>article</type><title>Depth Restoration in Under-Display Time-of-Flight Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Qiao, Xin ; Ge, Chenyang ; Deng, Pengchao ; Wei, Hao ; Poggi, Matteo ; Mattoccia, Stefano</creator><creatorcontrib>Qiao, Xin ; Ge, Chenyang ; Deng, Pengchao ; Wei, Hao ; Poggi, Matteo ; Mattoccia, Stefano</creatorcontrib><description>Under-display imaging has recently received considerable attention in both academia and industry. As a variation of this technique, under-display ToF (UD-ToF) cameras enable depth sensing for full-screen devices. However, it also brings problems of image blurring, signal-to-noise ratio and ranging accuracy reduction. To address these issues, we propose a cascaded deep network to improve the quality of UD-ToF depth maps. The network comprises two subnets, with the first using a complex-valued network in raw domain to perform denoising, deblurring and raw measurements enhancement jointly, while the second refining depth maps in depth domain based on the proposed multi-scale depth enhancement block (MSDEB). To enable training, we establish a data acquisition device and construct a real UD-ToF dataset by collecting real paired ToF raw data. Besides, we also build a large-scale synthetic UD-ToF dataset through noise analysis. The quantitative and qualitative evaluation results on public datasets and ours demonstrate that the presented network outperforms state-of-the-art algorithms and can further promote full-screen devices in practical applications.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3209905</identifier><identifier>PMID: 36155477</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Blurring ; Cameras ; CNN ; Data acquisition ; Datasets ; denoising ; depth restoration ; Domains ; Image restoration ; Imaging ; Noise measurement ; Noise reduction ; Qualitative analysis ; Sensors ; Signal to noise ratio ; Task analysis ; Time-of-flight ; under display</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-05, Vol.45 (5), p.5668-5683</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-8251cb10066f0482f4948caf8642218e3ea63d7631f37a412012f166812e12543</citedby><cites>FETCH-LOGICAL-c395t-8251cb10066f0482f4948caf8642218e3ea63d7631f37a412012f166812e12543</cites><orcidid>0000-0003-4775-7302 ; 0000-0002-3337-2236 ; 0000-0002-3681-7704 ; 0000-0002-0044-2947 ; 0000-0002-1747-1218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9903562$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9903562$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36155477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiao, Xin</creatorcontrib><creatorcontrib>Ge, Chenyang</creatorcontrib><creatorcontrib>Deng, Pengchao</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Poggi, Matteo</creatorcontrib><creatorcontrib>Mattoccia, Stefano</creatorcontrib><title>Depth Restoration in Under-Display Time-of-Flight Imaging</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Under-display imaging has recently received considerable attention in both academia and industry. As a variation of this technique, under-display ToF (UD-ToF) cameras enable depth sensing for full-screen devices. However, it also brings problems of image blurring, signal-to-noise ratio and ranging accuracy reduction. To address these issues, we propose a cascaded deep network to improve the quality of UD-ToF depth maps. The network comprises two subnets, with the first using a complex-valued network in raw domain to perform denoising, deblurring and raw measurements enhancement jointly, while the second refining depth maps in depth domain based on the proposed multi-scale depth enhancement block (MSDEB). To enable training, we establish a data acquisition device and construct a real UD-ToF dataset by collecting real paired ToF raw data. Besides, we also build a large-scale synthetic UD-ToF dataset through noise analysis. The quantitative and qualitative evaluation results on public datasets and ours demonstrate that the presented network outperforms state-of-the-art algorithms and can further promote full-screen devices in practical applications.</description><subject>Algorithms</subject><subject>Blurring</subject><subject>Cameras</subject><subject>CNN</subject><subject>Data acquisition</subject><subject>Datasets</subject><subject>denoising</subject><subject>depth restoration</subject><subject>Domains</subject><subject>Image restoration</subject><subject>Imaging</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Qualitative analysis</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Task analysis</subject><subject>Time-of-flight</subject><subject>under display</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtPwkAUhSdGI4j-AU1MEzduinPvPDqzNCBKgtEYWDdDmcKQvuy0C_69RZCFq7u43zk5-Qi5BToEoPpp_vn8Ph0iRRwypFpTcUb6oJkOmWD6nPQpSAyVQtUjV95vKQUuKLskPSZBCB5FfaLHtmo2wZf1TVmbxpVF4IpgUaxsHY6drzKzC-Yut2GZhpPMrTdNMM3N2hXra3KRmszbm-MdkMXkZT56C2cfr9PR8yxMmBZNqFBAsgRKpUwpV5hyzVViUiU5IijLrJFsFUkGKYsMB6SAKUipAC2g4GxAHg-9VV1-t93OOHc-sVlmClu2PsYIlGQRBdGhD__QbdnWRbeuo7SIIqX4nsIDldSl97VN46p2ual3MdB4Lzb-FRvvxcZHsV3o_ljdLnO7OkX-THbA3QFw1trTu8syIZH9ANv7eI0</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Qiao, Xin</creator><creator>Ge, Chenyang</creator><creator>Deng, Pengchao</creator><creator>Wei, Hao</creator><creator>Poggi, Matteo</creator><creator>Mattoccia, Stefano</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4775-7302</orcidid><orcidid>https://orcid.org/0000-0002-3337-2236</orcidid><orcidid>https://orcid.org/0000-0002-3681-7704</orcidid><orcidid>https://orcid.org/0000-0002-0044-2947</orcidid><orcidid>https://orcid.org/0000-0002-1747-1218</orcidid></search><sort><creationdate>20230501</creationdate><title>Depth Restoration in Under-Display Time-of-Flight Imaging</title><author>Qiao, Xin ; Ge, Chenyang ; Deng, Pengchao ; Wei, Hao ; Poggi, Matteo ; Mattoccia, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-8251cb10066f0482f4948caf8642218e3ea63d7631f37a412012f166812e12543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Blurring</topic><topic>Cameras</topic><topic>CNN</topic><topic>Data acquisition</topic><topic>Datasets</topic><topic>denoising</topic><topic>depth restoration</topic><topic>Domains</topic><topic>Image restoration</topic><topic>Imaging</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Qualitative analysis</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Task analysis</topic><topic>Time-of-flight</topic><topic>under display</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Xin</creatorcontrib><creatorcontrib>Ge, Chenyang</creatorcontrib><creatorcontrib>Deng, Pengchao</creatorcontrib><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Poggi, Matteo</creatorcontrib><creatorcontrib>Mattoccia, Stefano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Xin</au><au>Ge, Chenyang</au><au>Deng, Pengchao</au><au>Wei, Hao</au><au>Poggi, Matteo</au><au>Mattoccia, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth Restoration in Under-Display Time-of-Flight Imaging</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>45</volume><issue>5</issue><spage>5668</spage><epage>5683</epage><pages>5668-5683</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Under-display imaging has recently received considerable attention in both academia and industry. As a variation of this technique, under-display ToF (UD-ToF) cameras enable depth sensing for full-screen devices. However, it also brings problems of image blurring, signal-to-noise ratio and ranging accuracy reduction. To address these issues, we propose a cascaded deep network to improve the quality of UD-ToF depth maps. The network comprises two subnets, with the first using a complex-valued network in raw domain to perform denoising, deblurring and raw measurements enhancement jointly, while the second refining depth maps in depth domain based on the proposed multi-scale depth enhancement block (MSDEB). To enable training, we establish a data acquisition device and construct a real UD-ToF dataset by collecting real paired ToF raw data. Besides, we also build a large-scale synthetic UD-ToF dataset through noise analysis. The quantitative and qualitative evaluation results on public datasets and ours demonstrate that the presented network outperforms state-of-the-art algorithms and can further promote full-screen devices in practical applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>36155477</pmid><doi>10.1109/TPAMI.2022.3209905</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4775-7302</orcidid><orcidid>https://orcid.org/0000-0002-3337-2236</orcidid><orcidid>https://orcid.org/0000-0002-3681-7704</orcidid><orcidid>https://orcid.org/0000-0002-0044-2947</orcidid><orcidid>https://orcid.org/0000-0002-1747-1218</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-05, Vol.45 (5), p.5668-5683
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2795778845
source IEEE Electronic Library (IEL)
subjects Algorithms
Blurring
Cameras
CNN
Data acquisition
Datasets
denoising
depth restoration
Domains
Image restoration
Imaging
Noise measurement
Noise reduction
Qualitative analysis
Sensors
Signal to noise ratio
Task analysis
Time-of-flight
under display
title Depth Restoration in Under-Display Time-of-Flight Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A04%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20Restoration%20in%20Under-Display%20Time-of-Flight%20Imaging&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Qiao,%20Xin&rft.date=2023-05-01&rft.volume=45&rft.issue=5&rft.spage=5668&rft.epage=5683&rft.pages=5668-5683&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3209905&rft_dat=%3Cproquest_RIE%3E2795778845%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795778845&rft_id=info:pmid/36155477&rft_ieee_id=9903562&rfr_iscdi=true