Depth Restoration in Under-Display Time-of-Flight Imaging
Under-display imaging has recently received considerable attention in both academia and industry. As a variation of this technique, under-display ToF (UD-ToF) cameras enable depth sensing for full-screen devices. However, it also brings problems of image blurring, signal-to-noise ratio and ranging a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-05, Vol.45 (5), p.5668-5683 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Under-display imaging has recently received considerable attention in both academia and industry. As a variation of this technique, under-display ToF (UD-ToF) cameras enable depth sensing for full-screen devices. However, it also brings problems of image blurring, signal-to-noise ratio and ranging accuracy reduction. To address these issues, we propose a cascaded deep network to improve the quality of UD-ToF depth maps. The network comprises two subnets, with the first using a complex-valued network in raw domain to perform denoising, deblurring and raw measurements enhancement jointly, while the second refining depth maps in depth domain based on the proposed multi-scale depth enhancement block (MSDEB). To enable training, we establish a data acquisition device and construct a real UD-ToF dataset by collecting real paired ToF raw data. Besides, we also build a large-scale synthetic UD-ToF dataset through noise analysis. The quantitative and qualitative evaluation results on public datasets and ours demonstrate that the presented network outperforms state-of-the-art algorithms and can further promote full-screen devices in practical applications. |
---|---|
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2022.3209905 |