The cycle structure of a class of permutation polynomials
In this paper, we study the cycle structure of a permutation polynomial of the form f ( x ) = x ( q + 1 ) s 1 ( x + x q ) s 2 + x s 3 over F q 2 , where ( s 1 , s 2 , s 3 ) ∈ { ( q 2 - 2 , 3 , q ) , ( 1 , q 2 - 2 , 1 ) , ( 1 , q 2 - 1 , 2 ) , ( 1 , 2 , 4 ) } and q is even. By calculating the sum of...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2023-04, Vol.91 (4), p.1373-1400 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the cycle structure of a permutation polynomial of the form
f
(
x
)
=
x
(
q
+
1
)
s
1
(
x
+
x
q
)
s
2
+
x
s
3
over
F
q
2
, where
(
s
1
,
s
2
,
s
3
)
∈
{
(
q
2
-
2
,
3
,
q
)
,
(
1
,
q
2
-
2
,
1
)
,
(
1
,
q
2
-
1
,
2
)
,
(
1
,
2
,
4
)
}
and
q
is even. By calculating the sum of all elements in each cycle of a fraction polynomial
x
x
3
+
x
2
+
1
or a linearized polynomial
x
2
e
+
x
2
+
x
with
e
≥
0
, the cycle structure of
f
(
x
) over
F
q
2
in the first three cases, that is,
(
s
1
,
s
2
,
s
3
)
=
{
(
q
2
-
2
,
3
,
q
)
,
(
1
,
q
2
-
2
,
1
)
or
(
1
,
q
2
-
1
,
2
)
}
, is characterized. For the case
(
s
1
,
s
2
,
s
3
)
=
(
1
,
2
,
4
)
, we give the cycle structure of
f
(
x
) over
F
q
2
for
q
=
2
2
k
with a positive integer
k
. For
q
=
2
2
p
k
with an odd prime
p
, it needs more techniques to determine the cycle structure of
f
(
x
). We only give its cycle length. |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-022-01155-8 |