Does Biological Longevity Depend on the Magnetic Fields?

Discovery of magnetic isotope effect in chemistry elucidated new frontiers in magneto-chemistry of genes. The loading of polymerases with 25 Mg 2+ , 43 Ca 2+ , and 67 Zn 2+ ions carrying magnetic nuclei instead of 24 Mg 2+ , 40 Ca 2+ , and 64 Zn 2+ ions with nonmagnetic nuclei disclosed a huge isoto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of physical chemistry. B 2023-02, Vol.17 (1), p.128-134
1. Verfasser: Buchachenko, A. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 1
container_start_page 128
container_title Russian journal of physical chemistry. B
container_volume 17
creator Buchachenko, A. L.
description Discovery of magnetic isotope effect in chemistry elucidated new frontiers in magneto-chemistry of genes. The loading of polymerases with 25 Mg 2+ , 43 Ca 2+ , and 67 Zn 2+ ions carrying magnetic nuclei instead of 24 Mg 2+ , 40 Ca 2+ , and 64 Zn 2+ ions with nonmagnetic nuclei disclosed a huge isotope effect: nuclear magnetic ions decrease the rate of the DNA and gene synthesis by 3–5 times with respect to ions with nonmagnetic nuclei. The effect certifies new, enzymatic radical pair mechanism, which includes electron transfer from the growing DNA chain to the catalyzing ion as a first step of the mechanism. The key processes of gene functioning—DNA synthesis, DNA damage, and DNA repair – are shown to be magnetically controlled and mechanism of the control is physically substantiated. The effect of magnetic fields on the DNA synthesis, Hayflick limit, and biological longevity is discussed.
doi_str_mv 10.1134/S1990793123010037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2795520510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795520510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ba64fcf73b979b0125b14220580c5281a4c5d2ed58f59b76a8c0a1f0300898933</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZpGmSk-j-UWHFg3ouaZquXWqzJl1hv71ZVvQgnmYYfu8N7xFyjnCJyPOrZ9QapObIOCAAlwdktDtlUjN--LNzPCYnMa4ACiY1jIiaehfpbes7v2yt6ejC90v32Q5bOnVr19fU93R4c_TRLHs3tJbOW9fV8fqUHDWmi-7se47J63z2MrnPFk93D5ObRWY5FkNWmSJvbCN5paWuAJmoMGcMhAIrmEKTW1EzVwvVCF3JwigLBhvgAEorzfmYXOx918F_bFwcypXfhD69LFMCIZIVQqJwT9ngYwyuKdehfTdhWyKUu4LKPwUlDdtrYmJT6PDr_L_oCzdsZIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795520510</pqid></control><display><type>article</type><title>Does Biological Longevity Depend on the Magnetic Fields?</title><source>SpringerLink Journals - AutoHoldings</source><creator>Buchachenko, A. L.</creator><creatorcontrib>Buchachenko, A. L.</creatorcontrib><description>Discovery of magnetic isotope effect in chemistry elucidated new frontiers in magneto-chemistry of genes. The loading of polymerases with 25 Mg 2+ , 43 Ca 2+ , and 67 Zn 2+ ions carrying magnetic nuclei instead of 24 Mg 2+ , 40 Ca 2+ , and 64 Zn 2+ ions with nonmagnetic nuclei disclosed a huge isotope effect: nuclear magnetic ions decrease the rate of the DNA and gene synthesis by 3–5 times with respect to ions with nonmagnetic nuclei. The effect certifies new, enzymatic radical pair mechanism, which includes electron transfer from the growing DNA chain to the catalyzing ion as a first step of the mechanism. The key processes of gene functioning—DNA synthesis, DNA damage, and DNA repair – are shown to be magnetically controlled and mechanism of the control is physically substantiated. The effect of magnetic fields on the DNA synthesis, Hayflick limit, and biological longevity is discussed.</description><identifier>ISSN: 1990-7931</identifier><identifier>EISSN: 1990-7923</identifier><identifier>DOI: 10.1134/S1990793123010037</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemical Physics of Biological Processes ; Chemistry ; Chemistry and Materials Science ; Deoxyribonucleic acid ; DNA ; Electron transfer ; Isotope effect ; Magnetic fields ; Nuclei (cytology) ; Physical Chemistry ; Synthesis</subject><ispartof>Russian journal of physical chemistry. B, 2023-02, Vol.17 (1), p.128-134</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1990-7931, Russian Journal of Physical Chemistry B, 2023, Vol. 17, No. 1, pp. 128–134. © Pleiades Publishing, Ltd., 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ba64fcf73b979b0125b14220580c5281a4c5d2ed58f59b76a8c0a1f0300898933</citedby><cites>FETCH-LOGICAL-c316t-ba64fcf73b979b0125b14220580c5281a4c5d2ed58f59b76a8c0a1f0300898933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990793123010037$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990793123010037$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Buchachenko, A. L.</creatorcontrib><title>Does Biological Longevity Depend on the Magnetic Fields?</title><title>Russian journal of physical chemistry. B</title><addtitle>Russ. J. Phys. Chem. B</addtitle><description>Discovery of magnetic isotope effect in chemistry elucidated new frontiers in magneto-chemistry of genes. The loading of polymerases with 25 Mg 2+ , 43 Ca 2+ , and 67 Zn 2+ ions carrying magnetic nuclei instead of 24 Mg 2+ , 40 Ca 2+ , and 64 Zn 2+ ions with nonmagnetic nuclei disclosed a huge isotope effect: nuclear magnetic ions decrease the rate of the DNA and gene synthesis by 3–5 times with respect to ions with nonmagnetic nuclei. The effect certifies new, enzymatic radical pair mechanism, which includes electron transfer from the growing DNA chain to the catalyzing ion as a first step of the mechanism. The key processes of gene functioning—DNA synthesis, DNA damage, and DNA repair – are shown to be magnetically controlled and mechanism of the control is physically substantiated. The effect of magnetic fields on the DNA synthesis, Hayflick limit, and biological longevity is discussed.</description><subject>Chemical Physics of Biological Processes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electron transfer</subject><subject>Isotope effect</subject><subject>Magnetic fields</subject><subject>Nuclei (cytology)</subject><subject>Physical Chemistry</subject><subject>Synthesis</subject><issn>1990-7931</issn><issn>1990-7923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZpGmSk-j-UWHFg3ouaZquXWqzJl1hv71ZVvQgnmYYfu8N7xFyjnCJyPOrZ9QapObIOCAAlwdktDtlUjN--LNzPCYnMa4ACiY1jIiaehfpbes7v2yt6ejC90v32Q5bOnVr19fU93R4c_TRLHs3tJbOW9fV8fqUHDWmi-7se47J63z2MrnPFk93D5ObRWY5FkNWmSJvbCN5paWuAJmoMGcMhAIrmEKTW1EzVwvVCF3JwigLBhvgAEorzfmYXOx918F_bFwcypXfhD69LFMCIZIVQqJwT9ngYwyuKdehfTdhWyKUu4LKPwUlDdtrYmJT6PDr_L_oCzdsZIY</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Buchachenko, A. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Does Biological Longevity Depend on the Magnetic Fields?</title><author>Buchachenko, A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ba64fcf73b979b0125b14220580c5281a4c5d2ed58f59b76a8c0a1f0300898933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Physics of Biological Processes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electron transfer</topic><topic>Isotope effect</topic><topic>Magnetic fields</topic><topic>Nuclei (cytology)</topic><topic>Physical Chemistry</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchachenko, A. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchachenko, A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does Biological Longevity Depend on the Magnetic Fields?</atitle><jtitle>Russian journal of physical chemistry. B</jtitle><stitle>Russ. J. Phys. Chem. B</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><spage>128</spage><epage>134</epage><pages>128-134</pages><issn>1990-7931</issn><eissn>1990-7923</eissn><abstract>Discovery of magnetic isotope effect in chemistry elucidated new frontiers in magneto-chemistry of genes. The loading of polymerases with 25 Mg 2+ , 43 Ca 2+ , and 67 Zn 2+ ions carrying magnetic nuclei instead of 24 Mg 2+ , 40 Ca 2+ , and 64 Zn 2+ ions with nonmagnetic nuclei disclosed a huge isotope effect: nuclear magnetic ions decrease the rate of the DNA and gene synthesis by 3–5 times with respect to ions with nonmagnetic nuclei. The effect certifies new, enzymatic radical pair mechanism, which includes electron transfer from the growing DNA chain to the catalyzing ion as a first step of the mechanism. The key processes of gene functioning—DNA synthesis, DNA damage, and DNA repair – are shown to be magnetically controlled and mechanism of the control is physically substantiated. The effect of magnetic fields on the DNA synthesis, Hayflick limit, and biological longevity is discussed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990793123010037</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-7931
ispartof Russian journal of physical chemistry. B, 2023-02, Vol.17 (1), p.128-134
issn 1990-7931
1990-7923
language eng
recordid cdi_proquest_journals_2795520510
source SpringerLink Journals - AutoHoldings
subjects Chemical Physics of Biological Processes
Chemistry
Chemistry and Materials Science
Deoxyribonucleic acid
DNA
Electron transfer
Isotope effect
Magnetic fields
Nuclei (cytology)
Physical Chemistry
Synthesis
title Does Biological Longevity Depend on the Magnetic Fields?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20Biological%20Longevity%20Depend%20on%20the%20Magnetic%20Fields?&rft.jtitle=Russian%20journal%20of%20physical%20chemistry.%20B&rft.au=Buchachenko,%20A.%20L.&rft.date=2023-02-01&rft.volume=17&rft.issue=1&rft.spage=128&rft.epage=134&rft.pages=128-134&rft.issn=1990-7931&rft.eissn=1990-7923&rft_id=info:doi/10.1134/S1990793123010037&rft_dat=%3Cproquest_cross%3E2795520510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795520510&rft_id=info:pmid/&rfr_iscdi=true