Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction
Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-n...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2023-04, Vol.42 (4), p.2346-2365 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2365 |
---|---|
container_issue | 4 |
container_start_page | 2346 |
container_title | Circuits, systems, and signal processing |
container_volume | 42 |
creator | Sudhakar Reddy, P. Raghavendra, B. S. Narasimhadhan, A. V. |
description | Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-noise ratio (SNR) and breakdown for smaller SNR values. Moreover, these are not universal as they are aware of the number of nonzero coefficients (a.k.a. L0 norm) for reconstruction of the signal. In this paper, we propose a novel FRI reconstruction scheme based on error decrease detector criterion to extend the current scheme to a universal one which enables reconstructing signals with an unknown number of nonzero coefficients. With noiseless conditions, we show that the proposed FRI scheme achieves perfect reconstruction of the original signal. And also, computer simulations for the noisy case are presented where the proposed scheme shows improvements over the traditional FRI scheme in the breakdown SNR. Further, an application of the proposed universal FRI scheme on reconstruction of magnetic resonance images and QRS complexes is demonstrated. |
doi_str_mv | 10.1007/s00034-022-02220-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2795067840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795067840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2ae977c82fb76b210542d4b1c910a6cd781b6229d0489de283fdd7e98afafbdd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJ7EeSo1SrhYLQD_AWsvmoW9psTbYF_72pFbx5mJnL874MDyG3FO4pAHuIAFCUOSAeByHHMzKgVUHzijN-TgaAjOfA6fsluYpxDUBFKXBAFkvfHmyIapM9tVEH29ts3Po2nZlKq3PZxPvuoPq289lcf9itzVwXsvlOhWizebvyKTuzuvOxD3t95K7JhVObaG9-75Asx8-L0Ws-fXuZjB6nuS6o6HNUVjCmObqG1Q1SqEo0ZUO1oKBqbRinTY0oDJRcGIu8cMYwK7hyyjXGFENyd-rdhe5zb2Mv190-pH-iRCYqqBkvIVF4onToYgzWyV1otyp8SQryaE-e7MlkTv7Yk5hCxSkUE-xXNvxV_5P6Bmgrcs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795067840</pqid></control><display><type>article</type><title>Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction</title><source>SpringerLink Journals</source><creator>Sudhakar Reddy, P. ; Raghavendra, B. S. ; Narasimhadhan, A. V.</creator><creatorcontrib>Sudhakar Reddy, P. ; Raghavendra, B. S. ; Narasimhadhan, A. V.</creatorcontrib><description>Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-noise ratio (SNR) and breakdown for smaller SNR values. Moreover, these are not universal as they are aware of the number of nonzero coefficients (a.k.a. L0 norm) for reconstruction of the signal. In this paper, we propose a novel FRI reconstruction scheme based on error decrease detector criterion to extend the current scheme to a universal one which enables reconstructing signals with an unknown number of nonzero coefficients. With noiseless conditions, we show that the proposed FRI scheme achieves perfect reconstruction of the original signal. And also, computer simulations for the noisy case are presented where the proposed scheme shows improvements over the traditional FRI scheme in the breakdown SNR. Further, an application of the proposed universal FRI scheme on reconstruction of magnetic resonance images and QRS complexes is demonstrated.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-022-02220-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Breakdown ; Circuits and Systems ; Coefficients ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Error detection ; Fourier transforms ; Innovations ; Instrumentation ; Magnetic resonance imaging ; Sensors ; Signal processing ; Signal reconstruction ; Signal to noise ratio ; Signal,Image and Speech Processing ; Time signals</subject><ispartof>Circuits, systems, and signal processing, 2023-04, Vol.42 (4), p.2346-2365</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2ae977c82fb76b210542d4b1c910a6cd781b6229d0489de283fdd7e98afafbdd3</citedby><cites>FETCH-LOGICAL-c319t-2ae977c82fb76b210542d4b1c910a6cd781b6229d0489de283fdd7e98afafbdd3</cites><orcidid>0000-0001-9391-4861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-022-02220-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-022-02220-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sudhakar Reddy, P.</creatorcontrib><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Narasimhadhan, A. V.</creatorcontrib><title>Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-noise ratio (SNR) and breakdown for smaller SNR values. Moreover, these are not universal as they are aware of the number of nonzero coefficients (a.k.a. L0 norm) for reconstruction of the signal. In this paper, we propose a novel FRI reconstruction scheme based on error decrease detector criterion to extend the current scheme to a universal one which enables reconstructing signals with an unknown number of nonzero coefficients. With noiseless conditions, we show that the proposed FRI scheme achieves perfect reconstruction of the original signal. And also, computer simulations for the noisy case are presented where the proposed scheme shows improvements over the traditional FRI scheme in the breakdown SNR. Further, an application of the proposed universal FRI scheme on reconstruction of magnetic resonance images and QRS complexes is demonstrated.</description><subject>Breakdown</subject><subject>Circuits and Systems</subject><subject>Coefficients</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Error detection</subject><subject>Fourier transforms</subject><subject>Innovations</subject><subject>Instrumentation</subject><subject>Magnetic resonance imaging</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal reconstruction</subject><subject>Signal to noise ratio</subject><subject>Signal,Image and Speech Processing</subject><subject>Time signals</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJ7EeSo1SrhYLQD_AWsvmoW9psTbYF_72pFbx5mJnL874MDyG3FO4pAHuIAFCUOSAeByHHMzKgVUHzijN-TgaAjOfA6fsluYpxDUBFKXBAFkvfHmyIapM9tVEH29ts3Po2nZlKq3PZxPvuoPq289lcf9itzVwXsvlOhWizebvyKTuzuvOxD3t95K7JhVObaG9-75Asx8-L0Ws-fXuZjB6nuS6o6HNUVjCmObqG1Q1SqEo0ZUO1oKBqbRinTY0oDJRcGIu8cMYwK7hyyjXGFENyd-rdhe5zb2Mv190-pH-iRCYqqBkvIVF4onToYgzWyV1otyp8SQryaE-e7MlkTv7Yk5hCxSkUE-xXNvxV_5P6Bmgrcs4</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sudhakar Reddy, P.</creator><creator>Raghavendra, B. S.</creator><creator>Narasimhadhan, A. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9391-4861</orcidid></search><sort><creationdate>20230401</creationdate><title>Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction</title><author>Sudhakar Reddy, P. ; Raghavendra, B. S. ; Narasimhadhan, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2ae977c82fb76b210542d4b1c910a6cd781b6229d0489de283fdd7e98afafbdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Breakdown</topic><topic>Circuits and Systems</topic><topic>Coefficients</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Error detection</topic><topic>Fourier transforms</topic><topic>Innovations</topic><topic>Instrumentation</topic><topic>Magnetic resonance imaging</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal reconstruction</topic><topic>Signal to noise ratio</topic><topic>Signal,Image and Speech Processing</topic><topic>Time signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudhakar Reddy, P.</creatorcontrib><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Narasimhadhan, A. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudhakar Reddy, P.</au><au>Raghavendra, B. S.</au><au>Narasimhadhan, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>42</volume><issue>4</issue><spage>2346</spage><epage>2365</epage><pages>2346-2365</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-noise ratio (SNR) and breakdown for smaller SNR values. Moreover, these are not universal as they are aware of the number of nonzero coefficients (a.k.a. L0 norm) for reconstruction of the signal. In this paper, we propose a novel FRI reconstruction scheme based on error decrease detector criterion to extend the current scheme to a universal one which enables reconstructing signals with an unknown number of nonzero coefficients. With noiseless conditions, we show that the proposed FRI scheme achieves perfect reconstruction of the original signal. And also, computer simulations for the noisy case are presented where the proposed scheme shows improvements over the traditional FRI scheme in the breakdown SNR. Further, an application of the proposed universal FRI scheme on reconstruction of magnetic resonance images and QRS complexes is demonstrated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-022-02220-2</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9391-4861</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-081X |
ispartof | Circuits, systems, and signal processing, 2023-04, Vol.42 (4), p.2346-2365 |
issn | 0278-081X 1531-5878 |
language | eng |
recordid | cdi_proquest_journals_2795067840 |
source | SpringerLink Journals |
subjects | Breakdown Circuits and Systems Coefficients Electrical Engineering Electronics and Microelectronics Engineering Error detection Fourier transforms Innovations Instrumentation Magnetic resonance imaging Sensors Signal processing Signal reconstruction Signal to noise ratio Signal,Image and Speech Processing Time signals |
title | Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Discrete%20Finite%20Rate%20of%20Innovation%20Scheme%20for%20Sparse%20Signal%20Reconstruction&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Sudhakar%20Reddy,%20P.&rft.date=2023-04-01&rft.volume=42&rft.issue=4&rft.spage=2346&rft.epage=2365&rft.pages=2346-2365&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-022-02220-2&rft_dat=%3Cproquest_cross%3E2795067840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795067840&rft_id=info:pmid/&rfr_iscdi=true |