Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction

Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2023-04, Vol.42 (4), p.2346-2365
Hauptverfasser: Sudhakar Reddy, P., Raghavendra, B. S., Narasimhadhan, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2365
container_issue 4
container_start_page 2346
container_title Circuits, systems, and signal processing
container_volume 42
creator Sudhakar Reddy, P.
Raghavendra, B. S.
Narasimhadhan, A. V.
description Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-noise ratio (SNR) and breakdown for smaller SNR values. Moreover, these are not universal as they are aware of the number of nonzero coefficients (a.k.a. L0 norm) for reconstruction of the signal. In this paper, we propose a novel FRI reconstruction scheme based on error decrease detector criterion to extend the current scheme to a universal one which enables reconstructing signals with an unknown number of nonzero coefficients. With noiseless conditions, we show that the proposed FRI scheme achieves perfect reconstruction of the original signal. And also, computer simulations for the noisy case are presented where the proposed scheme shows improvements over the traditional FRI scheme in the breakdown SNR. Further, an application of the proposed universal FRI scheme on reconstruction of magnetic resonance images and QRS complexes is demonstrated.
doi_str_mv 10.1007/s00034-022-02220-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2795067840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795067840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2ae977c82fb76b210542d4b1c910a6cd781b6229d0489de283fdd7e98afafbdd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJ7EeSo1SrhYLQD_AWsvmoW9psTbYF_72pFbx5mJnL874MDyG3FO4pAHuIAFCUOSAeByHHMzKgVUHzijN-TgaAjOfA6fsluYpxDUBFKXBAFkvfHmyIapM9tVEH29ts3Po2nZlKq3PZxPvuoPq289lcf9itzVwXsvlOhWizebvyKTuzuvOxD3t95K7JhVObaG9-75Asx8-L0Ws-fXuZjB6nuS6o6HNUVjCmObqG1Q1SqEo0ZUO1oKBqbRinTY0oDJRcGIu8cMYwK7hyyjXGFENyd-rdhe5zb2Mv190-pH-iRCYqqBkvIVF4onToYgzWyV1otyp8SQryaE-e7MlkTv7Yk5hCxSkUE-xXNvxV_5P6Bmgrcs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795067840</pqid></control><display><type>article</type><title>Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction</title><source>SpringerLink Journals</source><creator>Sudhakar Reddy, P. ; Raghavendra, B. S. ; Narasimhadhan, A. V.</creator><creatorcontrib>Sudhakar Reddy, P. ; Raghavendra, B. S. ; Narasimhadhan, A. V.</creatorcontrib><description>Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-noise ratio (SNR) and breakdown for smaller SNR values. Moreover, these are not universal as they are aware of the number of nonzero coefficients (a.k.a. L0 norm) for reconstruction of the signal. In this paper, we propose a novel FRI reconstruction scheme based on error decrease detector criterion to extend the current scheme to a universal one which enables reconstructing signals with an unknown number of nonzero coefficients. With noiseless conditions, we show that the proposed FRI scheme achieves perfect reconstruction of the original signal. And also, computer simulations for the noisy case are presented where the proposed scheme shows improvements over the traditional FRI scheme in the breakdown SNR. Further, an application of the proposed universal FRI scheme on reconstruction of magnetic resonance images and QRS complexes is demonstrated.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-022-02220-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Breakdown ; Circuits and Systems ; Coefficients ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Error detection ; Fourier transforms ; Innovations ; Instrumentation ; Magnetic resonance imaging ; Sensors ; Signal processing ; Signal reconstruction ; Signal to noise ratio ; Signal,Image and Speech Processing ; Time signals</subject><ispartof>Circuits, systems, and signal processing, 2023-04, Vol.42 (4), p.2346-2365</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2ae977c82fb76b210542d4b1c910a6cd781b6229d0489de283fdd7e98afafbdd3</citedby><cites>FETCH-LOGICAL-c319t-2ae977c82fb76b210542d4b1c910a6cd781b6229d0489de283fdd7e98afafbdd3</cites><orcidid>0000-0001-9391-4861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-022-02220-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-022-02220-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sudhakar Reddy, P.</creatorcontrib><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Narasimhadhan, A. V.</creatorcontrib><title>Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-noise ratio (SNR) and breakdown for smaller SNR values. Moreover, these are not universal as they are aware of the number of nonzero coefficients (a.k.a. L0 norm) for reconstruction of the signal. In this paper, we propose a novel FRI reconstruction scheme based on error decrease detector criterion to extend the current scheme to a universal one which enables reconstructing signals with an unknown number of nonzero coefficients. With noiseless conditions, we show that the proposed FRI scheme achieves perfect reconstruction of the original signal. And also, computer simulations for the noisy case are presented where the proposed scheme shows improvements over the traditional FRI scheme in the breakdown SNR. Further, an application of the proposed universal FRI scheme on reconstruction of magnetic resonance images and QRS complexes is demonstrated.</description><subject>Breakdown</subject><subject>Circuits and Systems</subject><subject>Coefficients</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Error detection</subject><subject>Fourier transforms</subject><subject>Innovations</subject><subject>Instrumentation</subject><subject>Magnetic resonance imaging</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal reconstruction</subject><subject>Signal to noise ratio</subject><subject>Signal,Image and Speech Processing</subject><subject>Time signals</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJ7EeSo1SrhYLQD_AWsvmoW9psTbYF_72pFbx5mJnL874MDyG3FO4pAHuIAFCUOSAeByHHMzKgVUHzijN-TgaAjOfA6fsluYpxDUBFKXBAFkvfHmyIapM9tVEH29ts3Po2nZlKq3PZxPvuoPq289lcf9itzVwXsvlOhWizebvyKTuzuvOxD3t95K7JhVObaG9-75Asx8-L0Ws-fXuZjB6nuS6o6HNUVjCmObqG1Q1SqEo0ZUO1oKBqbRinTY0oDJRcGIu8cMYwK7hyyjXGFENyd-rdhe5zb2Mv190-pH-iRCYqqBkvIVF4onToYgzWyV1otyp8SQryaE-e7MlkTv7Yk5hCxSkUE-xXNvxV_5P6Bmgrcs4</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Sudhakar Reddy, P.</creator><creator>Raghavendra, B. S.</creator><creator>Narasimhadhan, A. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9391-4861</orcidid></search><sort><creationdate>20230401</creationdate><title>Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction</title><author>Sudhakar Reddy, P. ; Raghavendra, B. S. ; Narasimhadhan, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2ae977c82fb76b210542d4b1c910a6cd781b6229d0489de283fdd7e98afafbdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Breakdown</topic><topic>Circuits and Systems</topic><topic>Coefficients</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Error detection</topic><topic>Fourier transforms</topic><topic>Innovations</topic><topic>Instrumentation</topic><topic>Magnetic resonance imaging</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal reconstruction</topic><topic>Signal to noise ratio</topic><topic>Signal,Image and Speech Processing</topic><topic>Time signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudhakar Reddy, P.</creatorcontrib><creatorcontrib>Raghavendra, B. S.</creatorcontrib><creatorcontrib>Narasimhadhan, A. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudhakar Reddy, P.</au><au>Raghavendra, B. S.</au><au>Narasimhadhan, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>42</volume><issue>4</issue><spage>2346</spage><epage>2365</epage><pages>2346-2365</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>Finite rate of innovation (FRI) schemes have been proposed to reconstruct a class of discrete-time signals having small number of nonzero coefficients (sparse signals) from a limited number of observations. However, these reconstruction schemes achieve optimal performance up to a certain signal-to-noise ratio (SNR) and breakdown for smaller SNR values. Moreover, these are not universal as they are aware of the number of nonzero coefficients (a.k.a. L0 norm) for reconstruction of the signal. In this paper, we propose a novel FRI reconstruction scheme based on error decrease detector criterion to extend the current scheme to a universal one which enables reconstructing signals with an unknown number of nonzero coefficients. With noiseless conditions, we show that the proposed FRI scheme achieves perfect reconstruction of the original signal. And also, computer simulations for the noisy case are presented where the proposed scheme shows improvements over the traditional FRI scheme in the breakdown SNR. Further, an application of the proposed universal FRI scheme on reconstruction of magnetic resonance images and QRS complexes is demonstrated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-022-02220-2</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9391-4861</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2023-04, Vol.42 (4), p.2346-2365
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2795067840
source SpringerLink Journals
subjects Breakdown
Circuits and Systems
Coefficients
Electrical Engineering
Electronics and Microelectronics
Engineering
Error detection
Fourier transforms
Innovations
Instrumentation
Magnetic resonance imaging
Sensors
Signal processing
Signal reconstruction
Signal to noise ratio
Signal,Image and Speech Processing
Time signals
title Universal Discrete Finite Rate of Innovation Scheme for Sparse Signal Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Discrete%20Finite%20Rate%20of%20Innovation%20Scheme%20for%20Sparse%20Signal%20Reconstruction&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Sudhakar%20Reddy,%20P.&rft.date=2023-04-01&rft.volume=42&rft.issue=4&rft.spage=2346&rft.epage=2365&rft.pages=2346-2365&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-022-02220-2&rft_dat=%3Cproquest_cross%3E2795067840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795067840&rft_id=info:pmid/&rfr_iscdi=true