Uncertainty measure for Z-soft covering based rough graphs with application
Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the unc...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2023-01, Vol.44 (4), p.5789-5802 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5802 |
---|---|
container_issue | 4 |
container_start_page | 5789 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 44 |
creator | Pavithra, S. Manimaran, A. |
description | Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the uncertainty in Z-soft covering based rough graphs. Uncertainty measures such as information entropy, rough entropy and granularity measures related to Z-soft covering-based rough graphs are discussed. In addition, we develop a novel Multiple Attribute Group Decision-Making (MAGDM) model using Z-soft covering based rough graphs in medical diagnosis to identify the patients at high risk of chronic kidney disease using the collected data from the UCI Machine Learning Repository. |
doi_str_mv | 10.3233/JIFS-223678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2794925938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794925938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-1eebc20683e4d815156d68f09bb04d69dd7b635e62dcd94d64f02237bfe9ec173</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsr_0DApUTzmMljKcVHteBCu3ETMnm0U9rJmGSU_nun1NU5HA7ncj8Argm-Y5Sx-9f50weilHEhT8CESFEjqbg4HT3mFSK04ufgIucNxkTUFE_A27KzPhXTdmUPd97kIXkYYoJfKMdQoI0_PrXdCjYmewdTHFZruEqmX2f425Y1NH2_ba0pbewuwVkw2-yv_nUKlk-Pn7MXtHh_ns8eFshSogoi3jeWYi6Zr5wkNam54zJg1TS4clw5JxrOas-ps06NSRXw-JNoglfeEsGm4Oa426f4Pfhc9CYOqRtPaipUpWitmBxbt8eWTTHn5IPuU7szaa8J1gda-kBLH2mxP-S3XRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794925938</pqid></control><display><type>article</type><title>Uncertainty measure for Z-soft covering based rough graphs with application</title><source>Business Source Complete</source><creator>Pavithra, S. ; Manimaran, A.</creator><creatorcontrib>Pavithra, S. ; Manimaran, A.</creatorcontrib><description>Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the uncertainty in Z-soft covering based rough graphs. Uncertainty measures such as information entropy, rough entropy and granularity measures related to Z-soft covering-based rough graphs are discussed. In addition, we develop a novel Multiple Attribute Group Decision-Making (MAGDM) model using Z-soft covering based rough graphs in medical diagnosis to identify the patients at high risk of chronic kidney disease using the collected data from the UCI Machine Learning Repository.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-223678</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Decision making ; Entropy (Information theory) ; Graphs ; Kidney diseases ; Machine learning ; Uncertainty</subject><ispartof>Journal of intelligent & fuzzy systems, 2023-01, Vol.44 (4), p.5789-5802</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-1eebc20683e4d815156d68f09bb04d69dd7b635e62dcd94d64f02237bfe9ec173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Pavithra, S.</creatorcontrib><creatorcontrib>Manimaran, A.</creatorcontrib><title>Uncertainty measure for Z-soft covering based rough graphs with application</title><title>Journal of intelligent & fuzzy systems</title><description>Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the uncertainty in Z-soft covering based rough graphs. Uncertainty measures such as information entropy, rough entropy and granularity measures related to Z-soft covering-based rough graphs are discussed. In addition, we develop a novel Multiple Attribute Group Decision-Making (MAGDM) model using Z-soft covering based rough graphs in medical diagnosis to identify the patients at high risk of chronic kidney disease using the collected data from the UCI Machine Learning Repository.</description><subject>Decision making</subject><subject>Entropy (Information theory)</subject><subject>Graphs</subject><subject>Kidney diseases</subject><subject>Machine learning</subject><subject>Uncertainty</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKsr_0DApUTzmMljKcVHteBCu3ETMnm0U9rJmGSU_nun1NU5HA7ncj8Argm-Y5Sx-9f50weilHEhT8CESFEjqbg4HT3mFSK04ufgIucNxkTUFE_A27KzPhXTdmUPd97kIXkYYoJfKMdQoI0_PrXdCjYmewdTHFZruEqmX2f425Y1NH2_ba0pbewuwVkw2-yv_nUKlk-Pn7MXtHh_ns8eFshSogoi3jeWYi6Zr5wkNam54zJg1TS4clw5JxrOas-ps06NSRXw-JNoglfeEsGm4Oa426f4Pfhc9CYOqRtPaipUpWitmBxbt8eWTTHn5IPuU7szaa8J1gda-kBLH2mxP-S3XRQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Pavithra, S.</creator><creator>Manimaran, A.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230101</creationdate><title>Uncertainty measure for Z-soft covering based rough graphs with application</title><author>Pavithra, S. ; Manimaran, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-1eebc20683e4d815156d68f09bb04d69dd7b635e62dcd94d64f02237bfe9ec173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Decision making</topic><topic>Entropy (Information theory)</topic><topic>Graphs</topic><topic>Kidney diseases</topic><topic>Machine learning</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavithra, S.</creatorcontrib><creatorcontrib>Manimaran, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavithra, S.</au><au>Manimaran, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty measure for Z-soft covering based rough graphs with application</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>44</volume><issue>4</issue><spage>5789</spage><epage>5802</epage><pages>5789-5802</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the uncertainty in Z-soft covering based rough graphs. Uncertainty measures such as information entropy, rough entropy and granularity measures related to Z-soft covering-based rough graphs are discussed. In addition, we develop a novel Multiple Attribute Group Decision-Making (MAGDM) model using Z-soft covering based rough graphs in medical diagnosis to identify the patients at high risk of chronic kidney disease using the collected data from the UCI Machine Learning Repository.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-223678</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2023-01, Vol.44 (4), p.5789-5802 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2794925938 |
source | Business Source Complete |
subjects | Decision making Entropy (Information theory) Graphs Kidney diseases Machine learning Uncertainty |
title | Uncertainty measure for Z-soft covering based rough graphs with application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20measure%20for%20Z-soft%20covering%20based%20rough%20graphs%20with%20application&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Pavithra,%20S.&rft.date=2023-01-01&rft.volume=44&rft.issue=4&rft.spage=5789&rft.epage=5802&rft.pages=5789-5802&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-223678&rft_dat=%3Cproquest_cross%3E2794925938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794925938&rft_id=info:pmid/&rfr_iscdi=true |