Uncertainty measure for Z-soft covering based rough graphs with application

Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the unc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2023-01, Vol.44 (4), p.5789-5802
Hauptverfasser: Pavithra, S., Manimaran, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5802
container_issue 4
container_start_page 5789
container_title Journal of intelligent & fuzzy systems
container_volume 44
creator Pavithra, S.
Manimaran, A.
description Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the uncertainty in Z-soft covering based rough graphs. Uncertainty measures such as information entropy, rough entropy and granularity measures related to Z-soft covering-based rough graphs are discussed. In addition, we develop a novel Multiple Attribute Group Decision-Making (MAGDM) model using Z-soft covering based rough graphs in medical diagnosis to identify the patients at high risk of chronic kidney disease using the collected data from the UCI Machine Learning Repository.
doi_str_mv 10.3233/JIFS-223678
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2794925938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794925938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-1eebc20683e4d815156d68f09bb04d69dd7b635e62dcd94d64f02237bfe9ec173</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsr_0DApUTzmMljKcVHteBCu3ETMnm0U9rJmGSU_nun1NU5HA7ncj8Argm-Y5Sx-9f50weilHEhT8CESFEjqbg4HT3mFSK04ufgIucNxkTUFE_A27KzPhXTdmUPd97kIXkYYoJfKMdQoI0_PrXdCjYmewdTHFZruEqmX2f425Y1NH2_ba0pbewuwVkw2-yv_nUKlk-Pn7MXtHh_ns8eFshSogoi3jeWYi6Zr5wkNam54zJg1TS4clw5JxrOas-ps06NSRXw-JNoglfeEsGm4Oa426f4Pfhc9CYOqRtPaipUpWitmBxbt8eWTTHn5IPuU7szaa8J1gda-kBLH2mxP-S3XRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794925938</pqid></control><display><type>article</type><title>Uncertainty measure for Z-soft covering based rough graphs with application</title><source>Business Source Complete</source><creator>Pavithra, S. ; Manimaran, A.</creator><creatorcontrib>Pavithra, S. ; Manimaran, A.</creatorcontrib><description>Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the uncertainty in Z-soft covering based rough graphs. Uncertainty measures such as information entropy, rough entropy and granularity measures related to Z-soft covering-based rough graphs are discussed. In addition, we develop a novel Multiple Attribute Group Decision-Making (MAGDM) model using Z-soft covering based rough graphs in medical diagnosis to identify the patients at high risk of chronic kidney disease using the collected data from the UCI Machine Learning Repository.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-223678</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Decision making ; Entropy (Information theory) ; Graphs ; Kidney diseases ; Machine learning ; Uncertainty</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2023-01, Vol.44 (4), p.5789-5802</ispartof><rights>Copyright IOS Press BV 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-1eebc20683e4d815156d68f09bb04d69dd7b635e62dcd94d64f02237bfe9ec173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Pavithra, S.</creatorcontrib><creatorcontrib>Manimaran, A.</creatorcontrib><title>Uncertainty measure for Z-soft covering based rough graphs with application</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the uncertainty in Z-soft covering based rough graphs. Uncertainty measures such as information entropy, rough entropy and granularity measures related to Z-soft covering-based rough graphs are discussed. In addition, we develop a novel Multiple Attribute Group Decision-Making (MAGDM) model using Z-soft covering based rough graphs in medical diagnosis to identify the patients at high risk of chronic kidney disease using the collected data from the UCI Machine Learning Repository.</description><subject>Decision making</subject><subject>Entropy (Information theory)</subject><subject>Graphs</subject><subject>Kidney diseases</subject><subject>Machine learning</subject><subject>Uncertainty</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWKsr_0DApUTzmMljKcVHteBCu3ETMnm0U9rJmGSU_nun1NU5HA7ncj8Argm-Y5Sx-9f50weilHEhT8CESFEjqbg4HT3mFSK04ufgIucNxkTUFE_A27KzPhXTdmUPd97kIXkYYoJfKMdQoI0_PrXdCjYmewdTHFZruEqmX2f425Y1NH2_ba0pbewuwVkw2-yv_nUKlk-Pn7MXtHh_ns8eFshSogoi3jeWYi6Zr5wkNam54zJg1TS4clw5JxrOas-ps06NSRXw-JNoglfeEsGm4Oa426f4Pfhc9CYOqRtPaipUpWitmBxbt8eWTTHn5IPuU7szaa8J1gda-kBLH2mxP-S3XRQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Pavithra, S.</creator><creator>Manimaran, A.</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230101</creationdate><title>Uncertainty measure for Z-soft covering based rough graphs with application</title><author>Pavithra, S. ; Manimaran, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-1eebc20683e4d815156d68f09bb04d69dd7b635e62dcd94d64f02237bfe9ec173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Decision making</topic><topic>Entropy (Information theory)</topic><topic>Graphs</topic><topic>Kidney diseases</topic><topic>Machine learning</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavithra, S.</creatorcontrib><creatorcontrib>Manimaran, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavithra, S.</au><au>Manimaran, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty measure for Z-soft covering based rough graphs with application</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>44</volume><issue>4</issue><spage>5789</spage><epage>5802</epage><pages>5789-5802</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Soft graphs are an interesting way to represent specific information. In this paper, a new form of graphs called Z-soft covering based rough graphs using soft adhesion is defined. Some important properties are explored for the newly constructed graphs. The aim of this study is to investigate the uncertainty in Z-soft covering based rough graphs. Uncertainty measures such as information entropy, rough entropy and granularity measures related to Z-soft covering-based rough graphs are discussed. In addition, we develop a novel Multiple Attribute Group Decision-Making (MAGDM) model using Z-soft covering based rough graphs in medical diagnosis to identify the patients at high risk of chronic kidney disease using the collected data from the UCI Machine Learning Repository.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-223678</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2023-01, Vol.44 (4), p.5789-5802
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2794925938
source Business Source Complete
subjects Decision making
Entropy (Information theory)
Graphs
Kidney diseases
Machine learning
Uncertainty
title Uncertainty measure for Z-soft covering based rough graphs with application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20measure%20for%20Z-soft%20covering%20based%20rough%20graphs%20with%20application&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Pavithra,%20S.&rft.date=2023-01-01&rft.volume=44&rft.issue=4&rft.spage=5789&rft.epage=5802&rft.pages=5789-5802&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-223678&rft_dat=%3Cproquest_cross%3E2794925938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794925938&rft_id=info:pmid/&rfr_iscdi=true