Highly Crystalline Rubrene Light‐Emitting Diodes with Epitaxial Growth
Conventional organic optoelectronic devices suffer from low carrier mobility limited by the static and dynamic disorder. Organic crystals with long‐range order can circumvent the effects of disorder and significantly improve the charge transport. While highly ordered organic crystals offer the desir...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-04, Vol.33 (14), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Wang, Shu‐Jen Kirch, Anton Sawatzki, Michael Achenbach, Tim Kleemann, Hans Reineke, Sebastian Leo, Karl |
description | Conventional organic optoelectronic devices suffer from low carrier mobility limited by the static and dynamic disorder. Organic crystals with long‐range order can circumvent the effects of disorder and significantly improve the charge transport. While highly ordered organic crystals offer the desirable electronic coupling strength and charge transport, their integration into large‐area optoelectronic devices remains a challenge. Here, monolithic integrated triclinic crystal rubrene light‐emitting diodes (LEDs) are presented using epitaxial growth with functional additives being engineered into the films. Superior charge transport, excellent operational and long‐term stability in these light‐emitting devices are demonstrated. By comparing two rubrene‐based LEDs, one made from amorphous and one from crystalline rubrene layers, their exciton dynamics are estimated using comprehensive transient electroluminescence simulation. The crystalline LEDs show high triplet‐triplet annihilation (TTA) rate constant similar to TTA rate constant of triclinic single crystals determined by optical spectroscopy. At the same time, the crystalline phase enhances drastically the singlet‐fission and bimolecular annihilation rates, which reduces the overall performance of the LED compared to its amorphous counterpart. Finally, an outlook on the potential applications of rubrene and/or its derivatives crystalline films are provided for enhancing the performance of organic and hybrid optoelectronic devices.
In this study, monolithically integrated highly crystalline triclinic rubrene light‐emitting diodes are presented using epitaxial growth with functional additives being engineered into the films. The devices show excellent charge transport, operational, and long‐term stability. This study paves the way for advancing the performance of organic and hybrid optoelectonic devices with rubrene and/or its derivatives crystalline films. |
doi_str_mv | 10.1002/adfm.202213768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2794569497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794569497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-5cb56163a55bdd0d58f2e58c148dce978e0337d348124db8d150f44993b94f2e3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wOup-Z3kixLf4URQRTchZlJpk2ZdmqSUmfnI_iMPokplbp0dS7c79x7OADcIjhAEOL7QtfrAYYYI8IzcQZ6KENZSiAW56cZvV2CK-9XECLOCe2B-dwulk2XjFznQ9E0dmOS513pTNQ8rsL359dkbUOwm0Uytq02PtnbsEwmWxuKD1s0ycy1-7C8Bhd10Xhz86t98DqdvIzmaf40exgN87QijIuUVSWLUUjBWKk11EzU2DBRISp0ZSQXBhLCNaECYapLoRGDNaVSklLSiJI-uDve3br2fWd8UKt25zbxpcJcUpZJKnmkBkeqcq33ztRq6-y6cJ1CUB3aUoe21KmtaJBHw942pvuHVsPx9PHP-wNSiG6z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794569497</pqid></control><display><type>article</type><title>Highly Crystalline Rubrene Light‐Emitting Diodes with Epitaxial Growth</title><source>Wiley Journals</source><creator>Wang, Shu‐Jen ; Kirch, Anton ; Sawatzki, Michael ; Achenbach, Tim ; Kleemann, Hans ; Reineke, Sebastian ; Leo, Karl</creator><creatorcontrib>Wang, Shu‐Jen ; Kirch, Anton ; Sawatzki, Michael ; Achenbach, Tim ; Kleemann, Hans ; Reineke, Sebastian ; Leo, Karl</creatorcontrib><description>Conventional organic optoelectronic devices suffer from low carrier mobility limited by the static and dynamic disorder. Organic crystals with long‐range order can circumvent the effects of disorder and significantly improve the charge transport. While highly ordered organic crystals offer the desirable electronic coupling strength and charge transport, their integration into large‐area optoelectronic devices remains a challenge. Here, monolithic integrated triclinic crystal rubrene light‐emitting diodes (LEDs) are presented using epitaxial growth with functional additives being engineered into the films. Superior charge transport, excellent operational and long‐term stability in these light‐emitting devices are demonstrated. By comparing two rubrene‐based LEDs, one made from amorphous and one from crystalline rubrene layers, their exciton dynamics are estimated using comprehensive transient electroluminescence simulation. The crystalline LEDs show high triplet‐triplet annihilation (TTA) rate constant similar to TTA rate constant of triclinic single crystals determined by optical spectroscopy. At the same time, the crystalline phase enhances drastically the singlet‐fission and bimolecular annihilation rates, which reduces the overall performance of the LED compared to its amorphous counterpart. Finally, an outlook on the potential applications of rubrene and/or its derivatives crystalline films are provided for enhancing the performance of organic and hybrid optoelectronic devices.
In this study, monolithically integrated highly crystalline triclinic rubrene light‐emitting diodes are presented using epitaxial growth with functional additives being engineered into the films. The devices show excellent charge transport, operational, and long‐term stability. This study paves the way for advancing the performance of organic and hybrid optoelectonic devices with rubrene and/or its derivatives crystalline films.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202213768</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Additives ; Carrier mobility ; Charge transport ; Crystals ; Devices ; Epitaxial growth ; Excitons ; Light emitting diodes ; Materials science ; Optoelectronic devices ; Organic crystals ; organic light‐emitting diodes ; organic semiconductors ; organic thin films ; Single crystals ; Triclinic crystals</subject><ispartof>Advanced functional materials, 2023-04, Vol.33 (14), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-5cb56163a55bdd0d58f2e58c148dce978e0337d348124db8d150f44993b94f2e3</citedby><cites>FETCH-LOGICAL-c3578-5cb56163a55bdd0d58f2e58c148dce978e0337d348124db8d150f44993b94f2e3</cites><orcidid>0000-0002-9578-253X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202213768$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202213768$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Shu‐Jen</creatorcontrib><creatorcontrib>Kirch, Anton</creatorcontrib><creatorcontrib>Sawatzki, Michael</creatorcontrib><creatorcontrib>Achenbach, Tim</creatorcontrib><creatorcontrib>Kleemann, Hans</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><creatorcontrib>Leo, Karl</creatorcontrib><title>Highly Crystalline Rubrene Light‐Emitting Diodes with Epitaxial Growth</title><title>Advanced functional materials</title><description>Conventional organic optoelectronic devices suffer from low carrier mobility limited by the static and dynamic disorder. Organic crystals with long‐range order can circumvent the effects of disorder and significantly improve the charge transport. While highly ordered organic crystals offer the desirable electronic coupling strength and charge transport, their integration into large‐area optoelectronic devices remains a challenge. Here, monolithic integrated triclinic crystal rubrene light‐emitting diodes (LEDs) are presented using epitaxial growth with functional additives being engineered into the films. Superior charge transport, excellent operational and long‐term stability in these light‐emitting devices are demonstrated. By comparing two rubrene‐based LEDs, one made from amorphous and one from crystalline rubrene layers, their exciton dynamics are estimated using comprehensive transient electroluminescence simulation. The crystalline LEDs show high triplet‐triplet annihilation (TTA) rate constant similar to TTA rate constant of triclinic single crystals determined by optical spectroscopy. At the same time, the crystalline phase enhances drastically the singlet‐fission and bimolecular annihilation rates, which reduces the overall performance of the LED compared to its amorphous counterpart. Finally, an outlook on the potential applications of rubrene and/or its derivatives crystalline films are provided for enhancing the performance of organic and hybrid optoelectronic devices.
In this study, monolithically integrated highly crystalline triclinic rubrene light‐emitting diodes are presented using epitaxial growth with functional additives being engineered into the films. The devices show excellent charge transport, operational, and long‐term stability. This study paves the way for advancing the performance of organic and hybrid optoelectonic devices with rubrene and/or its derivatives crystalline films.</description><subject>Additives</subject><subject>Carrier mobility</subject><subject>Charge transport</subject><subject>Crystals</subject><subject>Devices</subject><subject>Epitaxial growth</subject><subject>Excitons</subject><subject>Light emitting diodes</subject><subject>Materials science</subject><subject>Optoelectronic devices</subject><subject>Organic crystals</subject><subject>organic light‐emitting diodes</subject><subject>organic semiconductors</subject><subject>organic thin films</subject><subject>Single crystals</subject><subject>Triclinic crystals</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1KAzEUhYMoWKtb1wOup-Z3kixLf4URQRTchZlJpk2ZdmqSUmfnI_iMPokplbp0dS7c79x7OADcIjhAEOL7QtfrAYYYI8IzcQZ6KENZSiAW56cZvV2CK-9XECLOCe2B-dwulk2XjFznQ9E0dmOS513pTNQ8rsL359dkbUOwm0Uytq02PtnbsEwmWxuKD1s0ycy1-7C8Bhd10Xhz86t98DqdvIzmaf40exgN87QijIuUVSWLUUjBWKk11EzU2DBRISp0ZSQXBhLCNaECYapLoRGDNaVSklLSiJI-uDve3br2fWd8UKt25zbxpcJcUpZJKnmkBkeqcq33ztRq6-y6cJ1CUB3aUoe21KmtaJBHw942pvuHVsPx9PHP-wNSiG6z</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Wang, Shu‐Jen</creator><creator>Kirch, Anton</creator><creator>Sawatzki, Michael</creator><creator>Achenbach, Tim</creator><creator>Kleemann, Hans</creator><creator>Reineke, Sebastian</creator><creator>Leo, Karl</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9578-253X</orcidid></search><sort><creationdate>20230401</creationdate><title>Highly Crystalline Rubrene Light‐Emitting Diodes with Epitaxial Growth</title><author>Wang, Shu‐Jen ; Kirch, Anton ; Sawatzki, Michael ; Achenbach, Tim ; Kleemann, Hans ; Reineke, Sebastian ; Leo, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-5cb56163a55bdd0d58f2e58c148dce978e0337d348124db8d150f44993b94f2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Carrier mobility</topic><topic>Charge transport</topic><topic>Crystals</topic><topic>Devices</topic><topic>Epitaxial growth</topic><topic>Excitons</topic><topic>Light emitting diodes</topic><topic>Materials science</topic><topic>Optoelectronic devices</topic><topic>Organic crystals</topic><topic>organic light‐emitting diodes</topic><topic>organic semiconductors</topic><topic>organic thin films</topic><topic>Single crystals</topic><topic>Triclinic crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shu‐Jen</creatorcontrib><creatorcontrib>Kirch, Anton</creatorcontrib><creatorcontrib>Sawatzki, Michael</creatorcontrib><creatorcontrib>Achenbach, Tim</creatorcontrib><creatorcontrib>Kleemann, Hans</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><creatorcontrib>Leo, Karl</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shu‐Jen</au><au>Kirch, Anton</au><au>Sawatzki, Michael</au><au>Achenbach, Tim</au><au>Kleemann, Hans</au><au>Reineke, Sebastian</au><au>Leo, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Crystalline Rubrene Light‐Emitting Diodes with Epitaxial Growth</atitle><jtitle>Advanced functional materials</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>33</volume><issue>14</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Conventional organic optoelectronic devices suffer from low carrier mobility limited by the static and dynamic disorder. Organic crystals with long‐range order can circumvent the effects of disorder and significantly improve the charge transport. While highly ordered organic crystals offer the desirable electronic coupling strength and charge transport, their integration into large‐area optoelectronic devices remains a challenge. Here, monolithic integrated triclinic crystal rubrene light‐emitting diodes (LEDs) are presented using epitaxial growth with functional additives being engineered into the films. Superior charge transport, excellent operational and long‐term stability in these light‐emitting devices are demonstrated. By comparing two rubrene‐based LEDs, one made from amorphous and one from crystalline rubrene layers, their exciton dynamics are estimated using comprehensive transient electroluminescence simulation. The crystalline LEDs show high triplet‐triplet annihilation (TTA) rate constant similar to TTA rate constant of triclinic single crystals determined by optical spectroscopy. At the same time, the crystalline phase enhances drastically the singlet‐fission and bimolecular annihilation rates, which reduces the overall performance of the LED compared to its amorphous counterpart. Finally, an outlook on the potential applications of rubrene and/or its derivatives crystalline films are provided for enhancing the performance of organic and hybrid optoelectronic devices.
In this study, monolithically integrated highly crystalline triclinic rubrene light‐emitting diodes are presented using epitaxial growth with functional additives being engineered into the films. The devices show excellent charge transport, operational, and long‐term stability. This study paves the way for advancing the performance of organic and hybrid optoelectonic devices with rubrene and/or its derivatives crystalline films.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202213768</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9578-253X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-04, Vol.33 (14), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2794569497 |
source | Wiley Journals |
subjects | Additives Carrier mobility Charge transport Crystals Devices Epitaxial growth Excitons Light emitting diodes Materials science Optoelectronic devices Organic crystals organic light‐emitting diodes organic semiconductors organic thin films Single crystals Triclinic crystals |
title | Highly Crystalline Rubrene Light‐Emitting Diodes with Epitaxial Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Crystalline%20Rubrene%20Light%E2%80%90Emitting%20Diodes%20with%20Epitaxial%20Growth&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Shu%E2%80%90Jen&rft.date=2023-04-01&rft.volume=33&rft.issue=14&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202213768&rft_dat=%3Cproquest_cross%3E2794569497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794569497&rft_id=info:pmid/&rfr_iscdi=true |