A container deployment strategy for server clusters with different resource types

The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2023-05, Vol.35 (10), p.n/a
Hauptverfasser: Ouyang, Mingxue, Xi, Jianqing, Bai, Weihua, Li, Keqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Concurrency and computation
container_volume 35
creator Ouyang, Mingxue
Xi, Jianqing
Bai, Weihua
Li, Keqin
description The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservices are key issues. With the continuous growth of computing‐ and storage‐intensive services, it is necessary to consider the deployment of microservices of different business types. This study establishes a multi‐objective optimization problem model with the similarity between containers and servers, load balance of clusters, and reliability of microservice execution as the optimization objectives. An improved artificial fish swarm algorithm is proposed for the container deployment of computing‐ and storage‐intensive microservices. The comprehensive experimental results show that, compared with the existing deployment strategies, the matching degree between the container and server, cluster load balance value, service execution reliability, and other performance parameters are improved while shortening the running time of the algorithm. In addition, under the constraint of load balancing, the resource utilization of the computing and storage server clusters is improved.
doi_str_mv 10.1002/cpe.7665
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2794370822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794370822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-c8d409371d2ae7ba19ef5af540f1538de432c89181e058cdb9a8c6ea5b1a05613</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYP8CcEvHjZmkk2u9ljKfUDCiroOaTZiW7Z7q5Jatl_b2rFm6cZmIeZ4SXkCtgUGOO3dsBpWRTyiExACp6xQuTHfz0vTslZCGvGAJiACXmZUdt30TQdelrj0PbjBrtIQ_Qm4vtIXe9pQP-Vxrbdhog-0F0TP2jdOId-bz2Gfust0jgOGC7IiTNtwMvfek7e7hav84ds-XT_OJ8tM8srITOr6pxVooSaGyxXBip00jiZM5d-VTXmgltVgQJkUtl6VRllCzRyBYbJAsQ5uT7sHXz_ucUQ9Tp90aWTmpdVLkqmOE_q5qCs70Pw6PTgm43xowam94HpFJjeB5ZodqC7psXxX6fnz4sf_w06A2z1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794370822</pqid></control><display><type>article</type><title>A container deployment strategy for server clusters with different resource types</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ouyang, Mingxue ; Xi, Jianqing ; Bai, Weihua ; Li, Keqin</creator><creatorcontrib>Ouyang, Mingxue ; Xi, Jianqing ; Bai, Weihua ; Li, Keqin</creatorcontrib><description>The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservices are key issues. With the continuous growth of computing‐ and storage‐intensive services, it is necessary to consider the deployment of microservices of different business types. This study establishes a multi‐objective optimization problem model with the similarity between containers and servers, load balance of clusters, and reliability of microservice execution as the optimization objectives. An improved artificial fish swarm algorithm is proposed for the container deployment of computing‐ and storage‐intensive microservices. The comprehensive experimental results show that, compared with the existing deployment strategies, the matching degree between the container and server, cluster load balance value, service execution reliability, and other performance parameters are improved while shortening the running time of the algorithm. In addition, under the constraint of load balancing, the resource utilization of the computing and storage server clusters is improved.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.7665</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; artificial fish swarm algorithm ; Cloud computing ; Clusters ; container ; Containers ; Data centers ; Load balancing ; microservices ; multi‐objective optimization ; Optimization ; Reliability ; Resource allocation ; Resource utilization ; Servers</subject><ispartof>Concurrency and computation, 2023-05, Vol.35 (10), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-c8d409371d2ae7ba19ef5af540f1538de432c89181e058cdb9a8c6ea5b1a05613</citedby><cites>FETCH-LOGICAL-c2935-c8d409371d2ae7ba19ef5af540f1538de432c89181e058cdb9a8c6ea5b1a05613</cites><orcidid>0000-0002-1205-4730 ; 0000-0001-8333-7415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.7665$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.7665$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ouyang, Mingxue</creatorcontrib><creatorcontrib>Xi, Jianqing</creatorcontrib><creatorcontrib>Bai, Weihua</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><title>A container deployment strategy for server clusters with different resource types</title><title>Concurrency and computation</title><description>The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservices are key issues. With the continuous growth of computing‐ and storage‐intensive services, it is necessary to consider the deployment of microservices of different business types. This study establishes a multi‐objective optimization problem model with the similarity between containers and servers, load balance of clusters, and reliability of microservice execution as the optimization objectives. An improved artificial fish swarm algorithm is proposed for the container deployment of computing‐ and storage‐intensive microservices. The comprehensive experimental results show that, compared with the existing deployment strategies, the matching degree between the container and server, cluster load balance value, service execution reliability, and other performance parameters are improved while shortening the running time of the algorithm. In addition, under the constraint of load balancing, the resource utilization of the computing and storage server clusters is improved.</description><subject>Algorithms</subject><subject>artificial fish swarm algorithm</subject><subject>Cloud computing</subject><subject>Clusters</subject><subject>container</subject><subject>Containers</subject><subject>Data centers</subject><subject>Load balancing</subject><subject>microservices</subject><subject>multi‐objective optimization</subject><subject>Optimization</subject><subject>Reliability</subject><subject>Resource allocation</subject><subject>Resource utilization</subject><subject>Servers</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYP8CcEvHjZmkk2u9ljKfUDCiroOaTZiW7Z7q5Jatl_b2rFm6cZmIeZ4SXkCtgUGOO3dsBpWRTyiExACp6xQuTHfz0vTslZCGvGAJiACXmZUdt30TQdelrj0PbjBrtIQ_Qm4vtIXe9pQP-Vxrbdhog-0F0TP2jdOId-bz2Gfust0jgOGC7IiTNtwMvfek7e7hav84ds-XT_OJ8tM8srITOr6pxVooSaGyxXBip00jiZM5d-VTXmgltVgQJkUtl6VRllCzRyBYbJAsQ5uT7sHXz_ucUQ9Tp90aWTmpdVLkqmOE_q5qCs70Pw6PTgm43xowam94HpFJjeB5ZodqC7psXxX6fnz4sf_w06A2z1</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ouyang, Mingxue</creator><creator>Xi, Jianqing</creator><creator>Bai, Weihua</creator><creator>Li, Keqin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1205-4730</orcidid><orcidid>https://orcid.org/0000-0001-8333-7415</orcidid></search><sort><creationdate>20230501</creationdate><title>A container deployment strategy for server clusters with different resource types</title><author>Ouyang, Mingxue ; Xi, Jianqing ; Bai, Weihua ; Li, Keqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-c8d409371d2ae7ba19ef5af540f1538de432c89181e058cdb9a8c6ea5b1a05613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>artificial fish swarm algorithm</topic><topic>Cloud computing</topic><topic>Clusters</topic><topic>container</topic><topic>Containers</topic><topic>Data centers</topic><topic>Load balancing</topic><topic>microservices</topic><topic>multi‐objective optimization</topic><topic>Optimization</topic><topic>Reliability</topic><topic>Resource allocation</topic><topic>Resource utilization</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Mingxue</creatorcontrib><creatorcontrib>Xi, Jianqing</creatorcontrib><creatorcontrib>Bai, Weihua</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Mingxue</au><au>Xi, Jianqing</au><au>Bai, Weihua</au><au>Li, Keqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A container deployment strategy for server clusters with different resource types</atitle><jtitle>Concurrency and computation</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservices are key issues. With the continuous growth of computing‐ and storage‐intensive services, it is necessary to consider the deployment of microservices of different business types. This study establishes a multi‐objective optimization problem model with the similarity between containers and servers, load balance of clusters, and reliability of microservice execution as the optimization objectives. An improved artificial fish swarm algorithm is proposed for the container deployment of computing‐ and storage‐intensive microservices. The comprehensive experimental results show that, compared with the existing deployment strategies, the matching degree between the container and server, cluster load balance value, service execution reliability, and other performance parameters are improved while shortening the running time of the algorithm. In addition, under the constraint of load balancing, the resource utilization of the computing and storage server clusters is improved.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.7665</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1205-4730</orcidid><orcidid>https://orcid.org/0000-0001-8333-7415</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2023-05, Vol.35 (10), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2794370822
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
artificial fish swarm algorithm
Cloud computing
Clusters
container
Containers
Data centers
Load balancing
microservices
multi‐objective optimization
Optimization
Reliability
Resource allocation
Resource utilization
Servers
title A container deployment strategy for server clusters with different resource types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20container%20deployment%20strategy%20for%20server%20clusters%20with%20different%20resource%20types&rft.jtitle=Concurrency%20and%20computation&rft.au=Ouyang,%20Mingxue&rft.date=2023-05-01&rft.volume=35&rft.issue=10&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.7665&rft_dat=%3Cproquest_cross%3E2794370822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794370822&rft_id=info:pmid/&rfr_iscdi=true