A container deployment strategy for server clusters with different resource types
The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservi...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2023-05, Vol.35 (10), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 35 |
creator | Ouyang, Mingxue Xi, Jianqing Bai, Weihua Li, Keqin |
description | The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservices are key issues. With the continuous growth of computing‐ and storage‐intensive services, it is necessary to consider the deployment of microservices of different business types. This study establishes a multi‐objective optimization problem model with the similarity between containers and servers, load balance of clusters, and reliability of microservice execution as the optimization objectives. An improved artificial fish swarm algorithm is proposed for the container deployment of computing‐ and storage‐intensive microservices. The comprehensive experimental results show that, compared with the existing deployment strategies, the matching degree between the container and server, cluster load balance value, service execution reliability, and other performance parameters are improved while shortening the running time of the algorithm. In addition, under the constraint of load balancing, the resource utilization of the computing and storage server clusters is improved. |
doi_str_mv | 10.1002/cpe.7665 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2794370822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2794370822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-c8d409371d2ae7ba19ef5af540f1538de432c89181e058cdb9a8c6ea5b1a05613</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYP8CcEvHjZmkk2u9ljKfUDCiroOaTZiW7Z7q5Jatl_b2rFm6cZmIeZ4SXkCtgUGOO3dsBpWRTyiExACp6xQuTHfz0vTslZCGvGAJiACXmZUdt30TQdelrj0PbjBrtIQ_Qm4vtIXe9pQP-Vxrbdhog-0F0TP2jdOId-bz2Gfust0jgOGC7IiTNtwMvfek7e7hav84ds-XT_OJ8tM8srITOr6pxVooSaGyxXBip00jiZM5d-VTXmgltVgQJkUtl6VRllCzRyBYbJAsQ5uT7sHXz_ucUQ9Tp90aWTmpdVLkqmOE_q5qCs70Pw6PTgm43xowam94HpFJjeB5ZodqC7psXxX6fnz4sf_w06A2z1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794370822</pqid></control><display><type>article</type><title>A container deployment strategy for server clusters with different resource types</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ouyang, Mingxue ; Xi, Jianqing ; Bai, Weihua ; Li, Keqin</creator><creatorcontrib>Ouyang, Mingxue ; Xi, Jianqing ; Bai, Weihua ; Li, Keqin</creatorcontrib><description>The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservices are key issues. With the continuous growth of computing‐ and storage‐intensive services, it is necessary to consider the deployment of microservices of different business types. This study establishes a multi‐objective optimization problem model with the similarity between containers and servers, load balance of clusters, and reliability of microservice execution as the optimization objectives. An improved artificial fish swarm algorithm is proposed for the container deployment of computing‐ and storage‐intensive microservices. The comprehensive experimental results show that, compared with the existing deployment strategies, the matching degree between the container and server, cluster load balance value, service execution reliability, and other performance parameters are improved while shortening the running time of the algorithm. In addition, under the constraint of load balancing, the resource utilization of the computing and storage server clusters is improved.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.7665</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; artificial fish swarm algorithm ; Cloud computing ; Clusters ; container ; Containers ; Data centers ; Load balancing ; microservices ; multi‐objective optimization ; Optimization ; Reliability ; Resource allocation ; Resource utilization ; Servers</subject><ispartof>Concurrency and computation, 2023-05, Vol.35 (10), p.n/a</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-c8d409371d2ae7ba19ef5af540f1538de432c89181e058cdb9a8c6ea5b1a05613</citedby><cites>FETCH-LOGICAL-c2935-c8d409371d2ae7ba19ef5af540f1538de432c89181e058cdb9a8c6ea5b1a05613</cites><orcidid>0000-0002-1205-4730 ; 0000-0001-8333-7415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.7665$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.7665$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ouyang, Mingxue</creatorcontrib><creatorcontrib>Xi, Jianqing</creatorcontrib><creatorcontrib>Bai, Weihua</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><title>A container deployment strategy for server clusters with different resource types</title><title>Concurrency and computation</title><description>The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservices are key issues. With the continuous growth of computing‐ and storage‐intensive services, it is necessary to consider the deployment of microservices of different business types. This study establishes a multi‐objective optimization problem model with the similarity between containers and servers, load balance of clusters, and reliability of microservice execution as the optimization objectives. An improved artificial fish swarm algorithm is proposed for the container deployment of computing‐ and storage‐intensive microservices. The comprehensive experimental results show that, compared with the existing deployment strategies, the matching degree between the container and server, cluster load balance value, service execution reliability, and other performance parameters are improved while shortening the running time of the algorithm. In addition, under the constraint of load balancing, the resource utilization of the computing and storage server clusters is improved.</description><subject>Algorithms</subject><subject>artificial fish swarm algorithm</subject><subject>Cloud computing</subject><subject>Clusters</subject><subject>container</subject><subject>Containers</subject><subject>Data centers</subject><subject>Load balancing</subject><subject>microservices</subject><subject>multi‐objective optimization</subject><subject>Optimization</subject><subject>Reliability</subject><subject>Resource allocation</subject><subject>Resource utilization</subject><subject>Servers</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYP8CcEvHjZmkk2u9ljKfUDCiroOaTZiW7Z7q5Jatl_b2rFm6cZmIeZ4SXkCtgUGOO3dsBpWRTyiExACp6xQuTHfz0vTslZCGvGAJiACXmZUdt30TQdelrj0PbjBrtIQ_Qm4vtIXe9pQP-Vxrbdhog-0F0TP2jdOId-bz2Gfust0jgOGC7IiTNtwMvfek7e7hav84ds-XT_OJ8tM8srITOr6pxVooSaGyxXBip00jiZM5d-VTXmgltVgQJkUtl6VRllCzRyBYbJAsQ5uT7sHXz_ucUQ9Tp90aWTmpdVLkqmOE_q5qCs70Pw6PTgm43xowam94HpFJjeB5ZodqC7psXxX6fnz4sf_w06A2z1</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ouyang, Mingxue</creator><creator>Xi, Jianqing</creator><creator>Bai, Weihua</creator><creator>Li, Keqin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1205-4730</orcidid><orcidid>https://orcid.org/0000-0001-8333-7415</orcidid></search><sort><creationdate>20230501</creationdate><title>A container deployment strategy for server clusters with different resource types</title><author>Ouyang, Mingxue ; Xi, Jianqing ; Bai, Weihua ; Li, Keqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-c8d409371d2ae7ba19ef5af540f1538de432c89181e058cdb9a8c6ea5b1a05613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>artificial fish swarm algorithm</topic><topic>Cloud computing</topic><topic>Clusters</topic><topic>container</topic><topic>Containers</topic><topic>Data centers</topic><topic>Load balancing</topic><topic>microservices</topic><topic>multi‐objective optimization</topic><topic>Optimization</topic><topic>Reliability</topic><topic>Resource allocation</topic><topic>Resource utilization</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Mingxue</creatorcontrib><creatorcontrib>Xi, Jianqing</creatorcontrib><creatorcontrib>Bai, Weihua</creatorcontrib><creatorcontrib>Li, Keqin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Mingxue</au><au>Xi, Jianqing</au><au>Bai, Weihua</au><au>Li, Keqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A container deployment strategy for server clusters with different resource types</atitle><jtitle>Concurrency and computation</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>The method of deploying microservices based on container technology is widely used in cloud environments. This method can realize the rapid deployment of microservices and improve the resource utilization of cloud datacenters. However, resource allocation and deployment of container‐based microservices are key issues. With the continuous growth of computing‐ and storage‐intensive services, it is necessary to consider the deployment of microservices of different business types. This study establishes a multi‐objective optimization problem model with the similarity between containers and servers, load balance of clusters, and reliability of microservice execution as the optimization objectives. An improved artificial fish swarm algorithm is proposed for the container deployment of computing‐ and storage‐intensive microservices. The comprehensive experimental results show that, compared with the existing deployment strategies, the matching degree between the container and server, cluster load balance value, service execution reliability, and other performance parameters are improved while shortening the running time of the algorithm. In addition, under the constraint of load balancing, the resource utilization of the computing and storage server clusters is improved.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.7665</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1205-4730</orcidid><orcidid>https://orcid.org/0000-0001-8333-7415</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2023-05, Vol.35 (10), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2794370822 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms artificial fish swarm algorithm Cloud computing Clusters container Containers Data centers Load balancing microservices multi‐objective optimization Optimization Reliability Resource allocation Resource utilization Servers |
title | A container deployment strategy for server clusters with different resource types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20container%20deployment%20strategy%20for%20server%20clusters%20with%20different%20resource%20types&rft.jtitle=Concurrency%20and%20computation&rft.au=Ouyang,%20Mingxue&rft.date=2023-05-01&rft.volume=35&rft.issue=10&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.7665&rft_dat=%3Cproquest_cross%3E2794370822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794370822&rft_id=info:pmid/&rfr_iscdi=true |