Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor
The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2022-12, Vol.56 (13), p.403-405 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | 13 |
container_start_page | 403 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 56 |
creator | Vigdorovich, E. N. |
description | The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of great importance. As a rule, these heterostructures are obtained by vapor-phase methods, the use of which requires correct data on the volatile components of a vapor composition. In this study, the composition of arsenic and phosphorus vapor is investigated by the tensometric static method. A mathematical model for the processing of experimental results is constructed. Data on the pressure of superheated arsenic vapor are obtained using a quartz gauge membrane in the range of temperature of 973–1173 K and pressure of 1.3 × 10
3
–1.9 × 10
4
Pa. As a result of calculations, it is shown that arsenic and phosphorus vapor mainly consists of two- and four-atom molecules. Using more reliable reference data on the As
4
, As, P
4
, and P enthalpies and entropies, the corresponding thermodynamic values are determined for As
2
:
= (178.90 ± 3.77) kJ/mol,
= (227.17 ± 5.44) J/(mol K); and for P
2
:
= (229.01 ± 3.55) kJ/mol,
= (156.16 ± 0.83) J/(mol K). |
doi_str_mv | 10.1134/S1063782622130140 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2794034626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744105885</galeid><sourcerecordid>A744105885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-5257e720a01e6dcaf93b519005a16aed63486cf9a854101b1f7a058c5e1080ff3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhoMoWKs_wFvAc3Rmv5IcS7EqFBRavYZtsttuaXbjbnLw37shggeROczwzvvMDJMktwj3iJQ9bBAEzQsiCEEKyOAsmSGUkAmWl-djLWg29i-TqxCOAIgFZ7NktVU2uFb13tTpph8ao0LqdNofVLp0beeC6Y2zo7TwQdnokrZJ3w4udAfnh5B-yM756-RCy1NQNz95nryvHrfL52z9-vSyXKyzmkLeZ5zwXOUEJKASTS11SXccSwAuUUjVCMoKUetSxtsQcIc6l8CLmiuEArSm8-Rumtt59zmo0FdHN3gbV1YkLxlQJoiIrvvJtZcnVRmrXe9lHaNRramdVdpEfZGzuIQXBY8ATkDtXQhe6arzppX-q0Koxv9Wf_4bGTIxIXrtXvnfU_6HvgHub3qT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794034626</pqid></control><display><type>article</type><title>Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor</title><source>SpringerNature Journals</source><creator>Vigdorovich, E. N.</creator><creatorcontrib>Vigdorovich, E. N.</creatorcontrib><description>The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of great importance. As a rule, these heterostructures are obtained by vapor-phase methods, the use of which requires correct data on the volatile components of a vapor composition. In this study, the composition of arsenic and phosphorus vapor is investigated by the tensometric static method. A mathematical model for the processing of experimental results is constructed. Data on the pressure of superheated arsenic vapor are obtained using a quartz gauge membrane in the range of temperature of 973–1173 K and pressure of 1.3 × 10
3
–1.9 × 10
4
Pa. As a result of calculations, it is shown that arsenic and phosphorus vapor mainly consists of two- and four-atom molecules. Using more reliable reference data on the As
4
, As, P
4
, and P enthalpies and entropies, the corresponding thermodynamic values are determined for As
2
:
= (178.90 ± 3.77) kJ/mol,
= (227.17 ± 5.44) J/(mol K); and for P
2
:
= (229.01 ± 3.55) kJ/mol,
= (156.16 ± 0.83) J/(mol K).</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782622130140</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Arsenic ; Arsenic compounds ; Composition ; Electronics Materials ; Enthalpy ; Field effect transistors ; Frequency ranges ; Gallium arsenide ; Gallium phosphides ; Heterostructures ; Magnetic Materials ; Magnetism ; Optoelectronics ; Phosphorus ; Physics ; Physics and Astronomy ; Semiconductor devices ; Vapors</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2022-12, Vol.56 (13), p.403-405</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-7826, Semiconductors, 2022, Vol. 56, No. 13, pp. 403–405. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2021, published in Izvestiya vuzov. Elektronika, 2021, Vol. 26, No. 5, pp. 347–352.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-5257e720a01e6dcaf93b519005a16aed63486cf9a854101b1f7a058c5e1080ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782622130140$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782622130140$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vigdorovich, E. N.</creatorcontrib><title>Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of great importance. As a rule, these heterostructures are obtained by vapor-phase methods, the use of which requires correct data on the volatile components of a vapor composition. In this study, the composition of arsenic and phosphorus vapor is investigated by the tensometric static method. A mathematical model for the processing of experimental results is constructed. Data on the pressure of superheated arsenic vapor are obtained using a quartz gauge membrane in the range of temperature of 973–1173 K and pressure of 1.3 × 10
3
–1.9 × 10
4
Pa. As a result of calculations, it is shown that arsenic and phosphorus vapor mainly consists of two- and four-atom molecules. Using more reliable reference data on the As
4
, As, P
4
, and P enthalpies and entropies, the corresponding thermodynamic values are determined for As
2
:
= (178.90 ± 3.77) kJ/mol,
= (227.17 ± 5.44) J/(mol K); and for P
2
:
= (229.01 ± 3.55) kJ/mol,
= (156.16 ± 0.83) J/(mol K).</description><subject>Arsenic</subject><subject>Arsenic compounds</subject><subject>Composition</subject><subject>Electronics Materials</subject><subject>Enthalpy</subject><subject>Field effect transistors</subject><subject>Frequency ranges</subject><subject>Gallium arsenide</subject><subject>Gallium phosphides</subject><subject>Heterostructures</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Optoelectronics</subject><subject>Phosphorus</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Semiconductor devices</subject><subject>Vapors</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhoMoWKs_wFvAc3Rmv5IcS7EqFBRavYZtsttuaXbjbnLw37shggeROczwzvvMDJMktwj3iJQ9bBAEzQsiCEEKyOAsmSGUkAmWl-djLWg29i-TqxCOAIgFZ7NktVU2uFb13tTpph8ao0LqdNofVLp0beeC6Y2zo7TwQdnokrZJ3w4udAfnh5B-yM756-RCy1NQNz95nryvHrfL52z9-vSyXKyzmkLeZ5zwXOUEJKASTS11SXccSwAuUUjVCMoKUetSxtsQcIc6l8CLmiuEArSm8-Rumtt59zmo0FdHN3gbV1YkLxlQJoiIrvvJtZcnVRmrXe9lHaNRramdVdpEfZGzuIQXBY8ATkDtXQhe6arzppX-q0Koxv9Wf_4bGTIxIXrtXvnfU_6HvgHub3qT</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Vigdorovich, E. N.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor</title><author>Vigdorovich, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-5257e720a01e6dcaf93b519005a16aed63486cf9a854101b1f7a058c5e1080ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arsenic</topic><topic>Arsenic compounds</topic><topic>Composition</topic><topic>Electronics Materials</topic><topic>Enthalpy</topic><topic>Field effect transistors</topic><topic>Frequency ranges</topic><topic>Gallium arsenide</topic><topic>Gallium phosphides</topic><topic>Heterostructures</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Optoelectronics</topic><topic>Phosphorus</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Semiconductor devices</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vigdorovich, E. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vigdorovich, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>56</volume><issue>13</issue><spage>403</spage><epage>405</epage><pages>403-405</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of great importance. As a rule, these heterostructures are obtained by vapor-phase methods, the use of which requires correct data on the volatile components of a vapor composition. In this study, the composition of arsenic and phosphorus vapor is investigated by the tensometric static method. A mathematical model for the processing of experimental results is constructed. Data on the pressure of superheated arsenic vapor are obtained using a quartz gauge membrane in the range of temperature of 973–1173 K and pressure of 1.3 × 10
3
–1.9 × 10
4
Pa. As a result of calculations, it is shown that arsenic and phosphorus vapor mainly consists of two- and four-atom molecules. Using more reliable reference data on the As
4
, As, P
4
, and P enthalpies and entropies, the corresponding thermodynamic values are determined for As
2
:
= (178.90 ± 3.77) kJ/mol,
= (227.17 ± 5.44) J/(mol K); and for P
2
:
= (229.01 ± 3.55) kJ/mol,
= (156.16 ± 0.83) J/(mol K).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782622130140</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2022-12, Vol.56 (13), p.403-405 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_proquest_journals_2794034626 |
source | SpringerNature Journals |
subjects | Arsenic Arsenic compounds Composition Electronics Materials Enthalpy Field effect transistors Frequency ranges Gallium arsenide Gallium phosphides Heterostructures Magnetic Materials Magnetism Optoelectronics Phosphorus Physics Physics and Astronomy Semiconductor devices Vapors |
title | Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensometric%20Studies%20of%20the%20Composition%20of%20Arsenic%20and%20Phosphorus%20Vapor&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Vigdorovich,%20E.%20N.&rft.date=2022-12-01&rft.volume=56&rft.issue=13&rft.spage=403&rft.epage=405&rft.pages=403-405&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782622130140&rft_dat=%3Cgale_proqu%3EA744105885%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794034626&rft_id=info:pmid/&rft_galeid=A744105885&rfr_iscdi=true |