Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor

The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2022-12, Vol.56 (13), p.403-405
1. Verfasser: Vigdorovich, E. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue 13
container_start_page 403
container_title Semiconductors (Woodbury, N.Y.)
container_volume 56
creator Vigdorovich, E. N.
description The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of great importance. As a rule, these heterostructures are obtained by vapor-phase methods, the use of which requires correct data on the volatile components of a vapor composition. In this study, the composition of arsenic and phosphorus vapor is investigated by the tensometric static method. A mathematical model for the processing of experimental results is constructed. Data on the pressure of superheated arsenic vapor are obtained using a quartz gauge membrane in the range of temperature of 973–1173 K and pressure of 1.3 × 10 3 –1.9 × 10 4 Pa. As a result of calculations, it is shown that arsenic and phosphorus vapor mainly consists of two- and four-atom molecules. Using more reliable reference data on the As 4 , As, P 4 , and P enthalpies and entropies, the corresponding thermodynamic values are determined for As 2 : = (178.90 ± 3.77) kJ/mol, = (227.17 ± 5.44) J/(mol K); and for P 2 : = (229.01 ± 3.55) kJ/mol, = (156.16 ± 0.83) J/(mol K).
doi_str_mv 10.1134/S1063782622130140
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2794034626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744105885</galeid><sourcerecordid>A744105885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-5257e720a01e6dcaf93b519005a16aed63486cf9a854101b1f7a058c5e1080ff3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhoMoWKs_wFvAc3Rmv5IcS7EqFBRavYZtsttuaXbjbnLw37shggeROczwzvvMDJMktwj3iJQ9bBAEzQsiCEEKyOAsmSGUkAmWl-djLWg29i-TqxCOAIgFZ7NktVU2uFb13tTpph8ao0LqdNofVLp0beeC6Y2zo7TwQdnokrZJ3w4udAfnh5B-yM756-RCy1NQNz95nryvHrfL52z9-vSyXKyzmkLeZ5zwXOUEJKASTS11SXccSwAuUUjVCMoKUetSxtsQcIc6l8CLmiuEArSm8-Rumtt59zmo0FdHN3gbV1YkLxlQJoiIrvvJtZcnVRmrXe9lHaNRramdVdpEfZGzuIQXBY8ATkDtXQhe6arzppX-q0Koxv9Wf_4bGTIxIXrtXvnfU_6HvgHub3qT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794034626</pqid></control><display><type>article</type><title>Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor</title><source>SpringerNature Journals</source><creator>Vigdorovich, E. N.</creator><creatorcontrib>Vigdorovich, E. N.</creatorcontrib><description>The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of great importance. As a rule, these heterostructures are obtained by vapor-phase methods, the use of which requires correct data on the volatile components of a vapor composition. In this study, the composition of arsenic and phosphorus vapor is investigated by the tensometric static method. A mathematical model for the processing of experimental results is constructed. Data on the pressure of superheated arsenic vapor are obtained using a quartz gauge membrane in the range of temperature of 973–1173 K and pressure of 1.3 × 10 3 –1.9 × 10 4 Pa. As a result of calculations, it is shown that arsenic and phosphorus vapor mainly consists of two- and four-atom molecules. Using more reliable reference data on the As 4 , As, P 4 , and P enthalpies and entropies, the corresponding thermodynamic values are determined for As 2 : = (178.90 ± 3.77) kJ/mol, = (227.17 ± 5.44) J/(mol K); and for P 2 : = (229.01 ± 3.55) kJ/mol, = (156.16 ± 0.83) J/(mol K).</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782622130140</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Arsenic ; Arsenic compounds ; Composition ; Electronics Materials ; Enthalpy ; Field effect transistors ; Frequency ranges ; Gallium arsenide ; Gallium phosphides ; Heterostructures ; Magnetic Materials ; Magnetism ; Optoelectronics ; Phosphorus ; Physics ; Physics and Astronomy ; Semiconductor devices ; Vapors</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2022-12, Vol.56 (13), p.403-405</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-7826, Semiconductors, 2022, Vol. 56, No. 13, pp. 403–405. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2021, published in Izvestiya vuzov. Elektronika, 2021, Vol. 26, No. 5, pp. 347–352.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-5257e720a01e6dcaf93b519005a16aed63486cf9a854101b1f7a058c5e1080ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782622130140$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782622130140$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vigdorovich, E. N.</creatorcontrib><title>Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of great importance. As a rule, these heterostructures are obtained by vapor-phase methods, the use of which requires correct data on the volatile components of a vapor composition. In this study, the composition of arsenic and phosphorus vapor is investigated by the tensometric static method. A mathematical model for the processing of experimental results is constructed. Data on the pressure of superheated arsenic vapor are obtained using a quartz gauge membrane in the range of temperature of 973–1173 K and pressure of 1.3 × 10 3 –1.9 × 10 4 Pa. As a result of calculations, it is shown that arsenic and phosphorus vapor mainly consists of two- and four-atom molecules. Using more reliable reference data on the As 4 , As, P 4 , and P enthalpies and entropies, the corresponding thermodynamic values are determined for As 2 : = (178.90 ± 3.77) kJ/mol, = (227.17 ± 5.44) J/(mol K); and for P 2 : = (229.01 ± 3.55) kJ/mol, = (156.16 ± 0.83) J/(mol K).</description><subject>Arsenic</subject><subject>Arsenic compounds</subject><subject>Composition</subject><subject>Electronics Materials</subject><subject>Enthalpy</subject><subject>Field effect transistors</subject><subject>Frequency ranges</subject><subject>Gallium arsenide</subject><subject>Gallium phosphides</subject><subject>Heterostructures</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Optoelectronics</subject><subject>Phosphorus</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Semiconductor devices</subject><subject>Vapors</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhoMoWKs_wFvAc3Rmv5IcS7EqFBRavYZtsttuaXbjbnLw37shggeROczwzvvMDJMktwj3iJQ9bBAEzQsiCEEKyOAsmSGUkAmWl-djLWg29i-TqxCOAIgFZ7NktVU2uFb13tTpph8ao0LqdNofVLp0beeC6Y2zo7TwQdnokrZJ3w4udAfnh5B-yM756-RCy1NQNz95nryvHrfL52z9-vSyXKyzmkLeZ5zwXOUEJKASTS11SXccSwAuUUjVCMoKUetSxtsQcIc6l8CLmiuEArSm8-Rumtt59zmo0FdHN3gbV1YkLxlQJoiIrvvJtZcnVRmrXe9lHaNRramdVdpEfZGzuIQXBY8ATkDtXQhe6arzppX-q0Koxv9Wf_4bGTIxIXrtXvnfU_6HvgHub3qT</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Vigdorovich, E. N.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor</title><author>Vigdorovich, E. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-5257e720a01e6dcaf93b519005a16aed63486cf9a854101b1f7a058c5e1080ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arsenic</topic><topic>Arsenic compounds</topic><topic>Composition</topic><topic>Electronics Materials</topic><topic>Enthalpy</topic><topic>Field effect transistors</topic><topic>Frequency ranges</topic><topic>Gallium arsenide</topic><topic>Gallium phosphides</topic><topic>Heterostructures</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Optoelectronics</topic><topic>Phosphorus</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Semiconductor devices</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vigdorovich, E. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vigdorovich, E. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>56</volume><issue>13</issue><spage>403</spage><epage>405</epage><pages>403-405</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The main active elements in the frequency range from a few to a hundred gigahertz are still field-effect transistors with a Schottky barrier based on gallium arsenide, other III–V compounds, and various heterostructures on their basis. For optoelectronics, gallium phosphide and its compounds are of great importance. As a rule, these heterostructures are obtained by vapor-phase methods, the use of which requires correct data on the volatile components of a vapor composition. In this study, the composition of arsenic and phosphorus vapor is investigated by the tensometric static method. A mathematical model for the processing of experimental results is constructed. Data on the pressure of superheated arsenic vapor are obtained using a quartz gauge membrane in the range of temperature of 973–1173 K and pressure of 1.3 × 10 3 –1.9 × 10 4 Pa. As a result of calculations, it is shown that arsenic and phosphorus vapor mainly consists of two- and four-atom molecules. Using more reliable reference data on the As 4 , As, P 4 , and P enthalpies and entropies, the corresponding thermodynamic values are determined for As 2 : = (178.90 ± 3.77) kJ/mol, = (227.17 ± 5.44) J/(mol K); and for P 2 : = (229.01 ± 3.55) kJ/mol, = (156.16 ± 0.83) J/(mol K).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782622130140</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2022-12, Vol.56 (13), p.403-405
issn 1063-7826
1090-6479
language eng
recordid cdi_proquest_journals_2794034626
source SpringerNature Journals
subjects Arsenic
Arsenic compounds
Composition
Electronics Materials
Enthalpy
Field effect transistors
Frequency ranges
Gallium arsenide
Gallium phosphides
Heterostructures
Magnetic Materials
Magnetism
Optoelectronics
Phosphorus
Physics
Physics and Astronomy
Semiconductor devices
Vapors
title Tensometric Studies of the Composition of Arsenic and Phosphorus Vapor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensometric%20Studies%20of%20the%20Composition%20of%20Arsenic%20and%20Phosphorus%20Vapor&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Vigdorovich,%20E.%20N.&rft.date=2022-12-01&rft.volume=56&rft.issue=13&rft.spage=403&rft.epage=405&rft.pages=403-405&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782622130140&rft_dat=%3Cgale_proqu%3EA744105885%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794034626&rft_id=info:pmid/&rft_galeid=A744105885&rfr_iscdi=true