Primary Carbide Formation in Tool Steels: Potential of Selected Laboratory Methods and Potential of Partial Premelting for the Generation of Thermodynamic Data
To predict the solidification and product properties of tool steels with complex chemical compositions, an understanding of the transformation behavior is crucial. Therefore, the quaternary Fe–C system with 10 wt% Cr and 3 wt% W (a subsystem of cold work steels, with M7C3 and M23C6 carbides) and the...
Gespeichert in:
Veröffentlicht in: | Steel research international 2023-04, Vol.94 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Steel research international |
container_volume | 94 |
creator | Presoly, Peter Gerstl, Bernhard Bernhard, Christian Marsoner, Stefan Angerer, Paul Friessnegger, Bernhard Hahn, Susanne |
description | To predict the solidification and product properties of tool steels with complex chemical compositions, an understanding of the transformation behavior is crucial. Therefore, the quaternary Fe–C system with 10 wt% Cr and 3 wt% W (a subsystem of cold work steels, with M7C3 and M23C6 carbides) and the Fe–C system with 6 wt% W and 5 wt% Mo (simplified high‐speed steel, with M6C and MC carbides) are selected. The motivation for this study is to develop a methodology for the safe and fast production of model alloys and the close to equilibrium performance of differential scanning calorimetry (DSC) measurements. Regular diffusion annealing of as‐cast carbidic steels is time‐consuming, but with an additional heat treatment during the DSC measurement in the semisolid zone (30–50% liquid phase fraction), a status close to equilibrium can be achieved within minutes due to the high diffusion. To prove the potential of the equilibration by partial premelting in the DSC, additional equilibration and quenching experiments are performed in a Tammann furnace and investigated using a scanning electron microscope and X‐ray diffraction analysis. By combining these methods, carbide types and the transformation temperatures can be verified to evaluate and construct complete phase diagrams.
The potential of differential scanning calorimetry measurements with partial premelting for a fast equilibration, scanning electron microscope investigations, annealing and quenching experiments, and X‐ray diffraction measurements are investigated based on the Fe–6W–5Mo–Cvar and Fe–10Cr–3W–Cvar system. The focus of the combined investigations is the determination of the high‐temperature phase transformations and the identification of the primary carbide type. |
doi_str_mv | 10.1002/srin.202200503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2793929106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793929106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4233-3ab74e60bf8d62d101fef60105b40c0523b893a418fcebc69b9e745ab0adcc273</originalsourceid><addsrcrecordid>eNqFkU9LxDAQxYsouKhXzwHPXSdJN229yfoXVl3cFbyVJJ26WdpEk4jsp_GrWq0onpzLzOH33oN5SXJIYUwB2HHwxo4ZMAYwAb6VjGghypRn2eN2fwtKUy4KvpschLCGfnhRiDwbJe9zbzrpN2QqvTI1kgvnOxmNs8RYsnSuJYuI2IYTMncRbTSyJa4hC2xRR6zJTCrnZXS9xQ3GlasDkbb-C8-l_zrnHjtso7FPpHGexBWSS7Toh7weXK7Qd67eWNkZTc5klPvJTiPbgAffey95uDhfTq_S2d3l9fR0luqMcZ5yqfIMBaimqAWrKdAGGwEUJioDDRPGVVFymdGi0ai0KFWJeTaRCmStNcv5XnI0-D579_KKIVZr9-ptH1mxvOQlKymInhoPlPYuBI9N9Ty8r6JQffZQffZQ_fTQC8pB8GZa3PxDV4v769tf7Qfry48p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793929106</pqid></control><display><type>article</type><title>Primary Carbide Formation in Tool Steels: Potential of Selected Laboratory Methods and Potential of Partial Premelting for the Generation of Thermodynamic Data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Presoly, Peter ; Gerstl, Bernhard ; Bernhard, Christian ; Marsoner, Stefan ; Angerer, Paul ; Friessnegger, Bernhard ; Hahn, Susanne</creator><creatorcontrib>Presoly, Peter ; Gerstl, Bernhard ; Bernhard, Christian ; Marsoner, Stefan ; Angerer, Paul ; Friessnegger, Bernhard ; Hahn, Susanne</creatorcontrib><description>To predict the solidification and product properties of tool steels with complex chemical compositions, an understanding of the transformation behavior is crucial. Therefore, the quaternary Fe–C system with 10 wt% Cr and 3 wt% W (a subsystem of cold work steels, with M7C3 and M23C6 carbides) and the Fe–C system with 6 wt% W and 5 wt% Mo (simplified high‐speed steel, with M6C and MC carbides) are selected. The motivation for this study is to develop a methodology for the safe and fast production of model alloys and the close to equilibrium performance of differential scanning calorimetry (DSC) measurements. Regular diffusion annealing of as‐cast carbidic steels is time‐consuming, but with an additional heat treatment during the DSC measurement in the semisolid zone (30–50% liquid phase fraction), a status close to equilibrium can be achieved within minutes due to the high diffusion. To prove the potential of the equilibration by partial premelting in the DSC, additional equilibration and quenching experiments are performed in a Tammann furnace and investigated using a scanning electron microscope and X‐ray diffraction analysis. By combining these methods, carbide types and the transformation temperatures can be verified to evaluate and construct complete phase diagrams.
The potential of differential scanning calorimetry measurements with partial premelting for a fast equilibration, scanning electron microscope investigations, annealing and quenching experiments, and X‐ray diffraction measurements are investigated based on the Fe–6W–5Mo–Cvar and Fe–10Cr–3W–Cvar system. The focus of the combined investigations is the determination of the high‐temperature phase transformations and the identification of the primary carbide type.</description><identifier>ISSN: 1611-3683</identifier><identifier>EISSN: 1869-344X</identifier><identifier>DOI: 10.1002/srin.202200503</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alloy productions ; Balancing ; Carbide tools ; Chemical composition ; Chromium ; Cold working ; Differential scanning calorimetry ; Diffusion ; equilibrations ; Heat treatment ; High speed tool steels ; Liquid phases ; phase diagram ; Phase diagrams ; primary carbide ; semisolid ; Semisolids ; Solidification ; Subsystems ; Tammann furnaces ; Transformation temperature ; Tungsten</subject><ispartof>Steel research international, 2023-04, Vol.94 (4), p.n/a</ispartof><rights>2022 The Authors. Steel Research International published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4233-3ab74e60bf8d62d101fef60105b40c0523b893a418fcebc69b9e745ab0adcc273</citedby><cites>FETCH-LOGICAL-c4233-3ab74e60bf8d62d101fef60105b40c0523b893a418fcebc69b9e745ab0adcc273</cites><orcidid>0000-0003-3976-9725 ; 0000-0002-7391-6891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsrin.202200503$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsrin.202200503$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Presoly, Peter</creatorcontrib><creatorcontrib>Gerstl, Bernhard</creatorcontrib><creatorcontrib>Bernhard, Christian</creatorcontrib><creatorcontrib>Marsoner, Stefan</creatorcontrib><creatorcontrib>Angerer, Paul</creatorcontrib><creatorcontrib>Friessnegger, Bernhard</creatorcontrib><creatorcontrib>Hahn, Susanne</creatorcontrib><title>Primary Carbide Formation in Tool Steels: Potential of Selected Laboratory Methods and Potential of Partial Premelting for the Generation of Thermodynamic Data</title><title>Steel research international</title><description>To predict the solidification and product properties of tool steels with complex chemical compositions, an understanding of the transformation behavior is crucial. Therefore, the quaternary Fe–C system with 10 wt% Cr and 3 wt% W (a subsystem of cold work steels, with M7C3 and M23C6 carbides) and the Fe–C system with 6 wt% W and 5 wt% Mo (simplified high‐speed steel, with M6C and MC carbides) are selected. The motivation for this study is to develop a methodology for the safe and fast production of model alloys and the close to equilibrium performance of differential scanning calorimetry (DSC) measurements. Regular diffusion annealing of as‐cast carbidic steels is time‐consuming, but with an additional heat treatment during the DSC measurement in the semisolid zone (30–50% liquid phase fraction), a status close to equilibrium can be achieved within minutes due to the high diffusion. To prove the potential of the equilibration by partial premelting in the DSC, additional equilibration and quenching experiments are performed in a Tammann furnace and investigated using a scanning electron microscope and X‐ray diffraction analysis. By combining these methods, carbide types and the transformation temperatures can be verified to evaluate and construct complete phase diagrams.
The potential of differential scanning calorimetry measurements with partial premelting for a fast equilibration, scanning electron microscope investigations, annealing and quenching experiments, and X‐ray diffraction measurements are investigated based on the Fe–6W–5Mo–Cvar and Fe–10Cr–3W–Cvar system. The focus of the combined investigations is the determination of the high‐temperature phase transformations and the identification of the primary carbide type.</description><subject>alloy productions</subject><subject>Balancing</subject><subject>Carbide tools</subject><subject>Chemical composition</subject><subject>Chromium</subject><subject>Cold working</subject><subject>Differential scanning calorimetry</subject><subject>Diffusion</subject><subject>equilibrations</subject><subject>Heat treatment</subject><subject>High speed tool steels</subject><subject>Liquid phases</subject><subject>phase diagram</subject><subject>Phase diagrams</subject><subject>primary carbide</subject><subject>semisolid</subject><subject>Semisolids</subject><subject>Solidification</subject><subject>Subsystems</subject><subject>Tammann furnaces</subject><subject>Transformation temperature</subject><subject>Tungsten</subject><issn>1611-3683</issn><issn>1869-344X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU9LxDAQxYsouKhXzwHPXSdJN229yfoXVl3cFbyVJJ26WdpEk4jsp_GrWq0onpzLzOH33oN5SXJIYUwB2HHwxo4ZMAYwAb6VjGghypRn2eN2fwtKUy4KvpschLCGfnhRiDwbJe9zbzrpN2QqvTI1kgvnOxmNs8RYsnSuJYuI2IYTMncRbTSyJa4hC2xRR6zJTCrnZXS9xQ3GlasDkbb-C8-l_zrnHjtso7FPpHGexBWSS7Toh7weXK7Qd67eWNkZTc5klPvJTiPbgAffey95uDhfTq_S2d3l9fR0luqMcZ5yqfIMBaimqAWrKdAGGwEUJioDDRPGVVFymdGi0ai0KFWJeTaRCmStNcv5XnI0-D579_KKIVZr9-ptH1mxvOQlKymInhoPlPYuBI9N9Ty8r6JQffZQffZQ_fTQC8pB8GZa3PxDV4v769tf7Qfry48p</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Presoly, Peter</creator><creator>Gerstl, Bernhard</creator><creator>Bernhard, Christian</creator><creator>Marsoner, Stefan</creator><creator>Angerer, Paul</creator><creator>Friessnegger, Bernhard</creator><creator>Hahn, Susanne</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3976-9725</orcidid><orcidid>https://orcid.org/0000-0002-7391-6891</orcidid></search><sort><creationdate>202304</creationdate><title>Primary Carbide Formation in Tool Steels: Potential of Selected Laboratory Methods and Potential of Partial Premelting for the Generation of Thermodynamic Data</title><author>Presoly, Peter ; Gerstl, Bernhard ; Bernhard, Christian ; Marsoner, Stefan ; Angerer, Paul ; Friessnegger, Bernhard ; Hahn, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4233-3ab74e60bf8d62d101fef60105b40c0523b893a418fcebc69b9e745ab0adcc273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>alloy productions</topic><topic>Balancing</topic><topic>Carbide tools</topic><topic>Chemical composition</topic><topic>Chromium</topic><topic>Cold working</topic><topic>Differential scanning calorimetry</topic><topic>Diffusion</topic><topic>equilibrations</topic><topic>Heat treatment</topic><topic>High speed tool steels</topic><topic>Liquid phases</topic><topic>phase diagram</topic><topic>Phase diagrams</topic><topic>primary carbide</topic><topic>semisolid</topic><topic>Semisolids</topic><topic>Solidification</topic><topic>Subsystems</topic><topic>Tammann furnaces</topic><topic>Transformation temperature</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Presoly, Peter</creatorcontrib><creatorcontrib>Gerstl, Bernhard</creatorcontrib><creatorcontrib>Bernhard, Christian</creatorcontrib><creatorcontrib>Marsoner, Stefan</creatorcontrib><creatorcontrib>Angerer, Paul</creatorcontrib><creatorcontrib>Friessnegger, Bernhard</creatorcontrib><creatorcontrib>Hahn, Susanne</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Steel research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Presoly, Peter</au><au>Gerstl, Bernhard</au><au>Bernhard, Christian</au><au>Marsoner, Stefan</au><au>Angerer, Paul</au><au>Friessnegger, Bernhard</au><au>Hahn, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Primary Carbide Formation in Tool Steels: Potential of Selected Laboratory Methods and Potential of Partial Premelting for the Generation of Thermodynamic Data</atitle><jtitle>Steel research international</jtitle><date>2023-04</date><risdate>2023</risdate><volume>94</volume><issue>4</issue><epage>n/a</epage><issn>1611-3683</issn><eissn>1869-344X</eissn><abstract>To predict the solidification and product properties of tool steels with complex chemical compositions, an understanding of the transformation behavior is crucial. Therefore, the quaternary Fe–C system with 10 wt% Cr and 3 wt% W (a subsystem of cold work steels, with M7C3 and M23C6 carbides) and the Fe–C system with 6 wt% W and 5 wt% Mo (simplified high‐speed steel, with M6C and MC carbides) are selected. The motivation for this study is to develop a methodology for the safe and fast production of model alloys and the close to equilibrium performance of differential scanning calorimetry (DSC) measurements. Regular diffusion annealing of as‐cast carbidic steels is time‐consuming, but with an additional heat treatment during the DSC measurement in the semisolid zone (30–50% liquid phase fraction), a status close to equilibrium can be achieved within minutes due to the high diffusion. To prove the potential of the equilibration by partial premelting in the DSC, additional equilibration and quenching experiments are performed in a Tammann furnace and investigated using a scanning electron microscope and X‐ray diffraction analysis. By combining these methods, carbide types and the transformation temperatures can be verified to evaluate and construct complete phase diagrams.
The potential of differential scanning calorimetry measurements with partial premelting for a fast equilibration, scanning electron microscope investigations, annealing and quenching experiments, and X‐ray diffraction measurements are investigated based on the Fe–6W–5Mo–Cvar and Fe–10Cr–3W–Cvar system. The focus of the combined investigations is the determination of the high‐temperature phase transformations and the identification of the primary carbide type.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/srin.202200503</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3976-9725</orcidid><orcidid>https://orcid.org/0000-0002-7391-6891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1611-3683 |
ispartof | Steel research international, 2023-04, Vol.94 (4), p.n/a |
issn | 1611-3683 1869-344X |
language | eng |
recordid | cdi_proquest_journals_2793929106 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | alloy productions Balancing Carbide tools Chemical composition Chromium Cold working Differential scanning calorimetry Diffusion equilibrations Heat treatment High speed tool steels Liquid phases phase diagram Phase diagrams primary carbide semisolid Semisolids Solidification Subsystems Tammann furnaces Transformation temperature Tungsten |
title | Primary Carbide Formation in Tool Steels: Potential of Selected Laboratory Methods and Potential of Partial Premelting for the Generation of Thermodynamic Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Primary%20Carbide%20Formation%20in%20Tool%20Steels:%20Potential%20of%20Selected%20Laboratory%20Methods%20and%20Potential%20of%20Partial%20Premelting%20for%20the%20Generation%20of%20Thermodynamic%20Data&rft.jtitle=Steel%20research%20international&rft.au=Presoly,%20Peter&rft.date=2023-04&rft.volume=94&rft.issue=4&rft.epage=n/a&rft.issn=1611-3683&rft.eissn=1869-344X&rft_id=info:doi/10.1002/srin.202200503&rft_dat=%3Cproquest_cross%3E2793929106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793929106&rft_id=info:pmid/&rfr_iscdi=true |