Exponential topological indices: optimal inequalities and applications

In this work we obtain inequalities relating a general topological index of a graph, F ( G ) = ∑ u v ∈ E ( G ) f ( d u , d v ) , with its corresponding exponential index, e F ( G ) = ∑ u v ∈ E ( G ) e f ( d u , d v ) when a (symmetric) function f ( · , · ) is evaluated in the degree of the two adjac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2023-05, Vol.61 (5), p.933-949
Hauptverfasser: Carballosa, Walter, Quintana, Yamilet, Rodríguez, José M., Sigarreta, José M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 949
container_issue 5
container_start_page 933
container_title Journal of mathematical chemistry
container_volume 61
creator Carballosa, Walter
Quintana, Yamilet
Rodríguez, José M.
Sigarreta, José M.
description In this work we obtain inequalities relating a general topological index of a graph, F ( G ) = ∑ u v ∈ E ( G ) f ( d u , d v ) , with its corresponding exponential index, e F ( G ) = ∑ u v ∈ E ( G ) e f ( d u , d v ) when a (symmetric) function f ( · , · ) is evaluated in the degree of the two adjacent vertices to each edge. Besides, we relate two general exponential indices e F 1 and e F 2 that verify a general inequality. These general relations directly yield with new inequalities and bounds involving some well-known topological indices like the generalized atom-bound connectivity index A B C α , the generalized second Zagreb index M 2 α , the generalized Platt index P α , and their corresponding exponential indices e A B C α , e M 2 α , e P α . The results and methodology shown in this work can also be applied to other exponential topological indices. Also, our analysis shows the applicability of the exponential topological indices to the study of several physico-chemical properties of octane isomers.
doi_str_mv 10.1007/s10910-022-01446-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2793434114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793434114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7fccdc947caed602277f088766769f0a4d64142eb7ed734d3ef6afeb043b66153</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hkkyYbb1JaFQpe9BzS_Ckpa7Ld7IJ-e9Ou4M3TDMPvzbx5CN0SuCcA4iETkAQw1DUGwhjH7AzNyELUuGmkOEczqBcSSyHJJbrKeQ8AsuHNDK1XX12KLg5Bt9WQutSmXTClD9EG4_JjlbohfJ4G7jDqNgzB5UpHW-muaws6hBTzNbrwus3u5rfO0cd69b58wZu359fl0wYbSuSAhTfGGsmE0c7y4lYID00jOBdcetDMckZY7bbCWUGZpc5z7d0WGN1yThZ0ju6mvV2fDqPLg9qnsY_lpKqFpIwyQlih6okyfcq5d151ffmh_1YE1DEvNeWligN1yksdRXQS5QLHnev_Vv-j-gE3vm5j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793434114</pqid></control><display><type>article</type><title>Exponential topological indices: optimal inequalities and applications</title><source>SpringerLink Journals</source><creator>Carballosa, Walter ; Quintana, Yamilet ; Rodríguez, José M. ; Sigarreta, José M.</creator><creatorcontrib>Carballosa, Walter ; Quintana, Yamilet ; Rodríguez, José M. ; Sigarreta, José M.</creatorcontrib><description>In this work we obtain inequalities relating a general topological index of a graph, F ( G ) = ∑ u v ∈ E ( G ) f ( d u , d v ) , with its corresponding exponential index, e F ( G ) = ∑ u v ∈ E ( G ) e f ( d u , d v ) when a (symmetric) function f ( · , · ) is evaluated in the degree of the two adjacent vertices to each edge. Besides, we relate two general exponential indices e F 1 and e F 2 that verify a general inequality. These general relations directly yield with new inequalities and bounds involving some well-known topological indices like the generalized atom-bound connectivity index A B C α , the generalized second Zagreb index M 2 α , the generalized Platt index P α , and their corresponding exponential indices e A B C α , e M 2 α , e P α . The results and methodology shown in this work can also be applied to other exponential topological indices. Also, our analysis shows the applicability of the exponential topological indices to the study of several physico-chemical properties of octane isomers.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-022-01446-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Chemical properties ; Chemistry ; Chemistry and Materials Science ; Graph theory ; Inequalities ; Math. Applications in Chemistry ; Original Paper ; Physical Chemistry ; Theoretical and Computational Chemistry ; Topology</subject><ispartof>Journal of mathematical chemistry, 2023-05, Vol.61 (5), p.933-949</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7fccdc947caed602277f088766769f0a4d64142eb7ed734d3ef6afeb043b66153</citedby><cites>FETCH-LOGICAL-c319t-7fccdc947caed602277f088766769f0a4d64142eb7ed734d3ef6afeb043b66153</cites><orcidid>0000-0003-1053-0892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-022-01446-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-022-01446-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Carballosa, Walter</creatorcontrib><creatorcontrib>Quintana, Yamilet</creatorcontrib><creatorcontrib>Rodríguez, José M.</creatorcontrib><creatorcontrib>Sigarreta, José M.</creatorcontrib><title>Exponential topological indices: optimal inequalities and applications</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this work we obtain inequalities relating a general topological index of a graph, F ( G ) = ∑ u v ∈ E ( G ) f ( d u , d v ) , with its corresponding exponential index, e F ( G ) = ∑ u v ∈ E ( G ) e f ( d u , d v ) when a (symmetric) function f ( · , · ) is evaluated in the degree of the two adjacent vertices to each edge. Besides, we relate two general exponential indices e F 1 and e F 2 that verify a general inequality. These general relations directly yield with new inequalities and bounds involving some well-known topological indices like the generalized atom-bound connectivity index A B C α , the generalized second Zagreb index M 2 α , the generalized Platt index P α , and their corresponding exponential indices e A B C α , e M 2 α , e P α . The results and methodology shown in this work can also be applied to other exponential topological indices. Also, our analysis shows the applicability of the exponential topological indices to the study of several physico-chemical properties of octane isomers.</description><subject>Apexes</subject><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Graph theory</subject><subject>Inequalities</subject><subject>Math. Applications in Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><subject>Topology</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hkkyYbb1JaFQpe9BzS_Ckpa7Ld7IJ-e9Ou4M3TDMPvzbx5CN0SuCcA4iETkAQw1DUGwhjH7AzNyELUuGmkOEczqBcSSyHJJbrKeQ8AsuHNDK1XX12KLg5Bt9WQutSmXTClD9EG4_JjlbohfJ4G7jDqNgzB5UpHW-muaws6hBTzNbrwus3u5rfO0cd69b58wZu359fl0wYbSuSAhTfGGsmE0c7y4lYID00jOBdcetDMckZY7bbCWUGZpc5z7d0WGN1yThZ0ju6mvV2fDqPLg9qnsY_lpKqFpIwyQlih6okyfcq5d151ffmh_1YE1DEvNeWligN1yksdRXQS5QLHnev_Vv-j-gE3vm5j</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Carballosa, Walter</creator><creator>Quintana, Yamilet</creator><creator>Rodríguez, José M.</creator><creator>Sigarreta, José M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1053-0892</orcidid></search><sort><creationdate>20230501</creationdate><title>Exponential topological indices: optimal inequalities and applications</title><author>Carballosa, Walter ; Quintana, Yamilet ; Rodríguez, José M. ; Sigarreta, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7fccdc947caed602277f088766769f0a4d64142eb7ed734d3ef6afeb043b66153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Graph theory</topic><topic>Inequalities</topic><topic>Math. Applications in Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carballosa, Walter</creatorcontrib><creatorcontrib>Quintana, Yamilet</creatorcontrib><creatorcontrib>Rodríguez, José M.</creatorcontrib><creatorcontrib>Sigarreta, José M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carballosa, Walter</au><au>Quintana, Yamilet</au><au>Rodríguez, José M.</au><au>Sigarreta, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential topological indices: optimal inequalities and applications</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>61</volume><issue>5</issue><spage>933</spage><epage>949</epage><pages>933-949</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this work we obtain inequalities relating a general topological index of a graph, F ( G ) = ∑ u v ∈ E ( G ) f ( d u , d v ) , with its corresponding exponential index, e F ( G ) = ∑ u v ∈ E ( G ) e f ( d u , d v ) when a (symmetric) function f ( · , · ) is evaluated in the degree of the two adjacent vertices to each edge. Besides, we relate two general exponential indices e F 1 and e F 2 that verify a general inequality. These general relations directly yield with new inequalities and bounds involving some well-known topological indices like the generalized atom-bound connectivity index A B C α , the generalized second Zagreb index M 2 α , the generalized Platt index P α , and their corresponding exponential indices e A B C α , e M 2 α , e P α . The results and methodology shown in this work can also be applied to other exponential topological indices. Also, our analysis shows the applicability of the exponential topological indices to the study of several physico-chemical properties of octane isomers.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-022-01446-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1053-0892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2023-05, Vol.61 (5), p.933-949
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_2793434114
source SpringerLink Journals
subjects Apexes
Chemical properties
Chemistry
Chemistry and Materials Science
Graph theory
Inequalities
Math. Applications in Chemistry
Original Paper
Physical Chemistry
Theoretical and Computational Chemistry
Topology
title Exponential topological indices: optimal inequalities and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20topological%20indices:%20optimal%20inequalities%20and%20applications&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Carballosa,%20Walter&rft.date=2023-05-01&rft.volume=61&rft.issue=5&rft.spage=933&rft.epage=949&rft.pages=933-949&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-022-01446-4&rft_dat=%3Cproquest_cross%3E2793434114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793434114&rft_id=info:pmid/&rfr_iscdi=true