Exponential topological indices: optimal inequalities and applications
In this work we obtain inequalities relating a general topological index of a graph, F ( G ) = ∑ u v ∈ E ( G ) f ( d u , d v ) , with its corresponding exponential index, e F ( G ) = ∑ u v ∈ E ( G ) e f ( d u , d v ) when a (symmetric) function f ( · , · ) is evaluated in the degree of the two adjac...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2023-05, Vol.61 (5), p.933-949 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 949 |
---|---|
container_issue | 5 |
container_start_page | 933 |
container_title | Journal of mathematical chemistry |
container_volume | 61 |
creator | Carballosa, Walter Quintana, Yamilet Rodríguez, José M. Sigarreta, José M. |
description | In this work we obtain inequalities relating a general topological index of a graph,
F
(
G
)
=
∑
u
v
∈
E
(
G
)
f
(
d
u
,
d
v
)
, with its corresponding exponential index,
e
F
(
G
)
=
∑
u
v
∈
E
(
G
)
e
f
(
d
u
,
d
v
)
when a (symmetric) function
f
(
·
,
·
)
is evaluated in the degree of the two adjacent vertices to each edge. Besides, we relate two general exponential indices
e
F
1
and
e
F
2
that verify a general inequality. These general relations directly yield with new inequalities and bounds involving some well-known topological indices like the generalized atom-bound connectivity index
A
B
C
α
, the generalized second Zagreb index
M
2
α
, the generalized Platt index
P
α
, and their corresponding exponential indices
e
A
B
C
α
,
e
M
2
α
,
e
P
α
. The results and methodology shown in this work can also be applied to other exponential topological indices. Also, our analysis shows the applicability of the exponential topological indices to the study of several physico-chemical properties of octane isomers. |
doi_str_mv | 10.1007/s10910-022-01446-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2793434114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793434114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7fccdc947caed602277f088766769f0a4d64142eb7ed734d3ef6afeb043b66153</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hkkyYbb1JaFQpe9BzS_Ckpa7Ld7IJ-e9Ou4M3TDMPvzbx5CN0SuCcA4iETkAQw1DUGwhjH7AzNyELUuGmkOEczqBcSSyHJJbrKeQ8AsuHNDK1XX12KLg5Bt9WQutSmXTClD9EG4_JjlbohfJ4G7jDqNgzB5UpHW-muaws6hBTzNbrwus3u5rfO0cd69b58wZu359fl0wYbSuSAhTfGGsmE0c7y4lYID00jOBdcetDMckZY7bbCWUGZpc5z7d0WGN1yThZ0ju6mvV2fDqPLg9qnsY_lpKqFpIwyQlih6okyfcq5d151ffmh_1YE1DEvNeWligN1yksdRXQS5QLHnev_Vv-j-gE3vm5j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793434114</pqid></control><display><type>article</type><title>Exponential topological indices: optimal inequalities and applications</title><source>SpringerLink Journals</source><creator>Carballosa, Walter ; Quintana, Yamilet ; Rodríguez, José M. ; Sigarreta, José M.</creator><creatorcontrib>Carballosa, Walter ; Quintana, Yamilet ; Rodríguez, José M. ; Sigarreta, José M.</creatorcontrib><description>In this work we obtain inequalities relating a general topological index of a graph,
F
(
G
)
=
∑
u
v
∈
E
(
G
)
f
(
d
u
,
d
v
)
, with its corresponding exponential index,
e
F
(
G
)
=
∑
u
v
∈
E
(
G
)
e
f
(
d
u
,
d
v
)
when a (symmetric) function
f
(
·
,
·
)
is evaluated in the degree of the two adjacent vertices to each edge. Besides, we relate two general exponential indices
e
F
1
and
e
F
2
that verify a general inequality. These general relations directly yield with new inequalities and bounds involving some well-known topological indices like the generalized atom-bound connectivity index
A
B
C
α
, the generalized second Zagreb index
M
2
α
, the generalized Platt index
P
α
, and their corresponding exponential indices
e
A
B
C
α
,
e
M
2
α
,
e
P
α
. The results and methodology shown in this work can also be applied to other exponential topological indices. Also, our analysis shows the applicability of the exponential topological indices to the study of several physico-chemical properties of octane isomers.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-022-01446-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Apexes ; Chemical properties ; Chemistry ; Chemistry and Materials Science ; Graph theory ; Inequalities ; Math. Applications in Chemistry ; Original Paper ; Physical Chemistry ; Theoretical and Computational Chemistry ; Topology</subject><ispartof>Journal of mathematical chemistry, 2023-05, Vol.61 (5), p.933-949</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7fccdc947caed602277f088766769f0a4d64142eb7ed734d3ef6afeb043b66153</citedby><cites>FETCH-LOGICAL-c319t-7fccdc947caed602277f088766769f0a4d64142eb7ed734d3ef6afeb043b66153</cites><orcidid>0000-0003-1053-0892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-022-01446-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-022-01446-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Carballosa, Walter</creatorcontrib><creatorcontrib>Quintana, Yamilet</creatorcontrib><creatorcontrib>Rodríguez, José M.</creatorcontrib><creatorcontrib>Sigarreta, José M.</creatorcontrib><title>Exponential topological indices: optimal inequalities and applications</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this work we obtain inequalities relating a general topological index of a graph,
F
(
G
)
=
∑
u
v
∈
E
(
G
)
f
(
d
u
,
d
v
)
, with its corresponding exponential index,
e
F
(
G
)
=
∑
u
v
∈
E
(
G
)
e
f
(
d
u
,
d
v
)
when a (symmetric) function
f
(
·
,
·
)
is evaluated in the degree of the two adjacent vertices to each edge. Besides, we relate two general exponential indices
e
F
1
and
e
F
2
that verify a general inequality. These general relations directly yield with new inequalities and bounds involving some well-known topological indices like the generalized atom-bound connectivity index
A
B
C
α
, the generalized second Zagreb index
M
2
α
, the generalized Platt index
P
α
, and their corresponding exponential indices
e
A
B
C
α
,
e
M
2
α
,
e
P
α
. The results and methodology shown in this work can also be applied to other exponential topological indices. Also, our analysis shows the applicability of the exponential topological indices to the study of several physico-chemical properties of octane isomers.</description><subject>Apexes</subject><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Graph theory</subject><subject>Inequalities</subject><subject>Math. Applications in Chemistry</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><subject>Topology</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hkkyYbb1JaFQpe9BzS_Ckpa7Ld7IJ-e9Ou4M3TDMPvzbx5CN0SuCcA4iETkAQw1DUGwhjH7AzNyELUuGmkOEczqBcSSyHJJbrKeQ8AsuHNDK1XX12KLg5Bt9WQutSmXTClD9EG4_JjlbohfJ4G7jDqNgzB5UpHW-muaws6hBTzNbrwus3u5rfO0cd69b58wZu359fl0wYbSuSAhTfGGsmE0c7y4lYID00jOBdcetDMckZY7bbCWUGZpc5z7d0WGN1yThZ0ju6mvV2fDqPLg9qnsY_lpKqFpIwyQlih6okyfcq5d151ffmh_1YE1DEvNeWligN1yksdRXQS5QLHnev_Vv-j-gE3vm5j</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Carballosa, Walter</creator><creator>Quintana, Yamilet</creator><creator>Rodríguez, José M.</creator><creator>Sigarreta, José M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1053-0892</orcidid></search><sort><creationdate>20230501</creationdate><title>Exponential topological indices: optimal inequalities and applications</title><author>Carballosa, Walter ; Quintana, Yamilet ; Rodríguez, José M. ; Sigarreta, José M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7fccdc947caed602277f088766769f0a4d64142eb7ed734d3ef6afeb043b66153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Graph theory</topic><topic>Inequalities</topic><topic>Math. Applications in Chemistry</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carballosa, Walter</creatorcontrib><creatorcontrib>Quintana, Yamilet</creatorcontrib><creatorcontrib>Rodríguez, José M.</creatorcontrib><creatorcontrib>Sigarreta, José M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carballosa, Walter</au><au>Quintana, Yamilet</au><au>Rodríguez, José M.</au><au>Sigarreta, José M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential topological indices: optimal inequalities and applications</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>61</volume><issue>5</issue><spage>933</spage><epage>949</epage><pages>933-949</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this work we obtain inequalities relating a general topological index of a graph,
F
(
G
)
=
∑
u
v
∈
E
(
G
)
f
(
d
u
,
d
v
)
, with its corresponding exponential index,
e
F
(
G
)
=
∑
u
v
∈
E
(
G
)
e
f
(
d
u
,
d
v
)
when a (symmetric) function
f
(
·
,
·
)
is evaluated in the degree of the two adjacent vertices to each edge. Besides, we relate two general exponential indices
e
F
1
and
e
F
2
that verify a general inequality. These general relations directly yield with new inequalities and bounds involving some well-known topological indices like the generalized atom-bound connectivity index
A
B
C
α
, the generalized second Zagreb index
M
2
α
, the generalized Platt index
P
α
, and their corresponding exponential indices
e
A
B
C
α
,
e
M
2
α
,
e
P
α
. The results and methodology shown in this work can also be applied to other exponential topological indices. Also, our analysis shows the applicability of the exponential topological indices to the study of several physico-chemical properties of octane isomers.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-022-01446-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1053-0892</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0259-9791 |
ispartof | Journal of mathematical chemistry, 2023-05, Vol.61 (5), p.933-949 |
issn | 0259-9791 1572-8897 |
language | eng |
recordid | cdi_proquest_journals_2793434114 |
source | SpringerLink Journals |
subjects | Apexes Chemical properties Chemistry Chemistry and Materials Science Graph theory Inequalities Math. Applications in Chemistry Original Paper Physical Chemistry Theoretical and Computational Chemistry Topology |
title | Exponential topological indices: optimal inequalities and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20topological%20indices:%20optimal%20inequalities%20and%20applications&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Carballosa,%20Walter&rft.date=2023-05-01&rft.volume=61&rft.issue=5&rft.spage=933&rft.epage=949&rft.pages=933-949&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-022-01446-4&rft_dat=%3Cproquest_cross%3E2793434114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793434114&rft_id=info:pmid/&rfr_iscdi=true |