Rheological behavior of magnetized ZnO – SAE50 nanolubricant over Riga plate: A theoretical study
ZnO − SAE 50 nanolubricant is one of the most important nanolubricants having widespread uses in heat exchange systems and automobiles. It minimizes friction between moving parts and prevents them from corrosion and scrape, improves durability and performance of the system and also minimizes the con...
Gespeichert in:
Veröffentlicht in: | Advances in mechanical engineering 2023-03, Vol.15 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Advances in mechanical engineering |
container_volume | 15 |
creator | Riaz, Muhammad Khan, Nargis Shehzad, Sabir Ali |
description | ZnO
−
SAE
50
nanolubricant is one of the most important nanolubricants having widespread uses in heat exchange systems and automobiles. It minimizes friction between moving parts and prevents them from corrosion and scrape, improves durability and performance of the system and also minimizes the consumption of fuel. This work investigates the rheological behavior of magnetized
ZnO
−
SAE
50
nanolubricant over moving/stationary Riga plate with viscous dissipation and nonlinear heat generation. The novel features of the current work are the use of
ZnO
−
SAE
50
nanolubricant as a flow fluid across a Riga plate and the application of the Patel model to boost the thermal conductivity of the nanolubricant. The governing system of equations is transformed to nonlinear ODEs and then treated analytically by using HAM. The augmentation in the velocity of nanolubricant
ZnO
−
SAE
50
is observed due to increasing values of Grashof number. The higher values of nonlinear thermal radiation and nonlinear heat generation parameters upsurge the temperature profile. The value of skin friction increases by increasing modified Hartman number and velocity slip parameter while reverse trend is observed by enhancing magnetic parameter. The radiation parameter, temperature dependent heat source parameter and solid volume fraction tend to augment Nusselt number at the Riga surface. |
doi_str_mv | 10.1177/16878132231162305 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_proquest_journals_2793371459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_16878132231162305</sage_id><sourcerecordid>2793371459</sourcerecordid><originalsourceid>FETCH-LOGICAL-p265t-be54579401789f3ba1f4ccad4e23889cb977103cf521284f9c4592093afcfb6b3</originalsourceid><addsrcrecordid>eNplkM1KAzEURoMoWGofwF3A9dTcZDJJ3JVSf6BQqLpxMyRpMh0ZJ3UmU9CV7-Ab-iTOUNGFq3u5nPNd-BA6BzIFEOISMikkMEoZQEYZ4UdoNNwSCSk5_t0ZPUWTti0N4SQjJFNqhOx660IVitLqChu31fsyNDh4_KKL2sXy3W3wU73CXx-f-H624ATXug5VZ5reqCMOe9fgdVlovKt0dFd4hmOf2PTqkNjGbvN2hk68rlo3-Zlj9Hi9eJjfJsvVzd18tkx2NOMxMY6nXKiUgJDKM6PBp9bqTeook1JZo4QAwqznFKhMvbIpV5Qopr31JjNsjC4OubsmvHaujflz6Jq6f5lToRgT0As9NT1QrS7cHwEkH7rM_3XJvgFBPmX_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793371459</pqid></control><display><type>article</type><title>Rheological behavior of magnetized ZnO – SAE50 nanolubricant over Riga plate: A theoretical study</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Riaz, Muhammad ; Khan, Nargis ; Shehzad, Sabir Ali</creator><creatorcontrib>Riaz, Muhammad ; Khan, Nargis ; Shehzad, Sabir Ali</creatorcontrib><description>ZnO
−
SAE
50
nanolubricant is one of the most important nanolubricants having widespread uses in heat exchange systems and automobiles. It minimizes friction between moving parts and prevents them from corrosion and scrape, improves durability and performance of the system and also minimizes the consumption of fuel. This work investigates the rheological behavior of magnetized
ZnO
−
SAE
50
nanolubricant over moving/stationary Riga plate with viscous dissipation and nonlinear heat generation. The novel features of the current work are the use of
ZnO
−
SAE
50
nanolubricant as a flow fluid across a Riga plate and the application of the Patel model to boost the thermal conductivity of the nanolubricant. The governing system of equations is transformed to nonlinear ODEs and then treated analytically by using HAM. The augmentation in the velocity of nanolubricant
ZnO
−
SAE
50
is observed due to increasing values of Grashof number. The higher values of nonlinear thermal radiation and nonlinear heat generation parameters upsurge the temperature profile. The value of skin friction increases by increasing modified Hartman number and velocity slip parameter while reverse trend is observed by enhancing magnetic parameter. The radiation parameter, temperature dependent heat source parameter and solid volume fraction tend to augment Nusselt number at the Riga surface.</description><identifier>ISSN: 1687-8132</identifier><identifier>EISSN: 1687-8140</identifier><identifier>DOI: 10.1177/16878132231162305</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Fluid flow ; Grashof number ; Heat ; Heat exchange ; Heat generation ; Magnetic properties ; Parameter modification ; Radiation ; Rheological properties ; Rheology ; Skin friction ; Temperature dependence ; Temperature profiles ; Thermal conductivity ; Thermal radiation ; Zinc oxide</subject><ispartof>Advances in mechanical engineering, 2023-03, Vol.15 (3)</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8359-9706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/16878132231162305$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/16878132231162305$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21947,27832,27903,27904,44924,45312</link.rule.ids></links><search><creatorcontrib>Riaz, Muhammad</creatorcontrib><creatorcontrib>Khan, Nargis</creatorcontrib><creatorcontrib>Shehzad, Sabir Ali</creatorcontrib><title>Rheological behavior of magnetized ZnO – SAE50 nanolubricant over Riga plate: A theoretical study</title><title>Advances in mechanical engineering</title><description>ZnO
−
SAE
50
nanolubricant is one of the most important nanolubricants having widespread uses in heat exchange systems and automobiles. It minimizes friction between moving parts and prevents them from corrosion and scrape, improves durability and performance of the system and also minimizes the consumption of fuel. This work investigates the rheological behavior of magnetized
ZnO
−
SAE
50
nanolubricant over moving/stationary Riga plate with viscous dissipation and nonlinear heat generation. The novel features of the current work are the use of
ZnO
−
SAE
50
nanolubricant as a flow fluid across a Riga plate and the application of the Patel model to boost the thermal conductivity of the nanolubricant. The governing system of equations is transformed to nonlinear ODEs and then treated analytically by using HAM. The augmentation in the velocity of nanolubricant
ZnO
−
SAE
50
is observed due to increasing values of Grashof number. The higher values of nonlinear thermal radiation and nonlinear heat generation parameters upsurge the temperature profile. The value of skin friction increases by increasing modified Hartman number and velocity slip parameter while reverse trend is observed by enhancing magnetic parameter. The radiation parameter, temperature dependent heat source parameter and solid volume fraction tend to augment Nusselt number at the Riga surface.</description><subject>Fluid flow</subject><subject>Grashof number</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat generation</subject><subject>Magnetic properties</subject><subject>Parameter modification</subject><subject>Radiation</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Skin friction</subject><subject>Temperature dependence</subject><subject>Temperature profiles</subject><subject>Thermal conductivity</subject><subject>Thermal radiation</subject><subject>Zinc oxide</subject><issn>1687-8132</issn><issn>1687-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>BENPR</sourceid><recordid>eNplkM1KAzEURoMoWGofwF3A9dTcZDJJ3JVSf6BQqLpxMyRpMh0ZJ3UmU9CV7-Ab-iTOUNGFq3u5nPNd-BA6BzIFEOISMikkMEoZQEYZ4UdoNNwSCSk5_t0ZPUWTti0N4SQjJFNqhOx660IVitLqChu31fsyNDh4_KKL2sXy3W3wU73CXx-f-H624ATXug5VZ5reqCMOe9fgdVlovKt0dFd4hmOf2PTqkNjGbvN2hk68rlo3-Zlj9Hi9eJjfJsvVzd18tkx2NOMxMY6nXKiUgJDKM6PBp9bqTeook1JZo4QAwqznFKhMvbIpV5Qopr31JjNsjC4OubsmvHaujflz6Jq6f5lToRgT0As9NT1QrS7cHwEkH7rM_3XJvgFBPmX_</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Riaz, Muhammad</creator><creator>Khan, Nargis</creator><creator>Shehzad, Sabir Ali</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8359-9706</orcidid></search><sort><creationdate>202303</creationdate><title>Rheological behavior of magnetized ZnO – SAE50 nanolubricant over Riga plate: A theoretical study</title><author>Riaz, Muhammad ; Khan, Nargis ; Shehzad, Sabir Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p265t-be54579401789f3ba1f4ccad4e23889cb977103cf521284f9c4592093afcfb6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fluid flow</topic><topic>Grashof number</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat generation</topic><topic>Magnetic properties</topic><topic>Parameter modification</topic><topic>Radiation</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Skin friction</topic><topic>Temperature dependence</topic><topic>Temperature profiles</topic><topic>Thermal conductivity</topic><topic>Thermal radiation</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riaz, Muhammad</creatorcontrib><creatorcontrib>Khan, Nargis</creatorcontrib><creatorcontrib>Shehzad, Sabir Ali</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Advances in mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riaz, Muhammad</au><au>Khan, Nargis</au><au>Shehzad, Sabir Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological behavior of magnetized ZnO – SAE50 nanolubricant over Riga plate: A theoretical study</atitle><jtitle>Advances in mechanical engineering</jtitle><date>2023-03</date><risdate>2023</risdate><volume>15</volume><issue>3</issue><issn>1687-8132</issn><eissn>1687-8140</eissn><abstract>ZnO
−
SAE
50
nanolubricant is one of the most important nanolubricants having widespread uses in heat exchange systems and automobiles. It minimizes friction between moving parts and prevents them from corrosion and scrape, improves durability and performance of the system and also minimizes the consumption of fuel. This work investigates the rheological behavior of magnetized
ZnO
−
SAE
50
nanolubricant over moving/stationary Riga plate with viscous dissipation and nonlinear heat generation. The novel features of the current work are the use of
ZnO
−
SAE
50
nanolubricant as a flow fluid across a Riga plate and the application of the Patel model to boost the thermal conductivity of the nanolubricant. The governing system of equations is transformed to nonlinear ODEs and then treated analytically by using HAM. The augmentation in the velocity of nanolubricant
ZnO
−
SAE
50
is observed due to increasing values of Grashof number. The higher values of nonlinear thermal radiation and nonlinear heat generation parameters upsurge the temperature profile. The value of skin friction increases by increasing modified Hartman number and velocity slip parameter while reverse trend is observed by enhancing magnetic parameter. The radiation parameter, temperature dependent heat source parameter and solid volume fraction tend to augment Nusselt number at the Riga surface.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/16878132231162305</doi><orcidid>https://orcid.org/0000-0001-8359-9706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8132 |
ispartof | Advances in mechanical engineering, 2023-03, Vol.15 (3) |
issn | 1687-8132 1687-8140 |
language | eng |
recordid | cdi_proquest_journals_2793371459 |
source | DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Fluid flow Grashof number Heat Heat exchange Heat generation Magnetic properties Parameter modification Radiation Rheological properties Rheology Skin friction Temperature dependence Temperature profiles Thermal conductivity Thermal radiation Zinc oxide |
title | Rheological behavior of magnetized ZnO – SAE50 nanolubricant over Riga plate: A theoretical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20behavior%20of%20magnetized%20ZnO%20%E2%80%93%20SAE50%20nanolubricant%20over%20Riga%20plate:%20A%20theoretical%20study&rft.jtitle=Advances%20in%20mechanical%20engineering&rft.au=Riaz,%20Muhammad&rft.date=2023-03&rft.volume=15&rft.issue=3&rft.issn=1687-8132&rft.eissn=1687-8140&rft_id=info:doi/10.1177/16878132231162305&rft_dat=%3Cproquest_sage_%3E2793371459%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793371459&rft_id=info:pmid/&rft_sage_id=10.1177_16878132231162305&rfr_iscdi=true |