Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam
Landslide is a severe geohazard in many mountainous areas of Vietnam during the rainy season. They directly threaten human lives and properties every year. Landslide susceptibility maps are useful tools for risk mitigation, land-use planning, and early warning systems for local areas. It is necessar...
Gespeichert in:
Veröffentlicht in: | Natural hazards (Dordrecht) 2023-03, Vol.116 (2), p.2283-2309 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2309 |
---|---|
container_issue | 2 |
container_start_page | 2283 |
container_title | Natural hazards (Dordrecht) |
container_volume | 116 |
creator | Bui, Quynh Duy Ha, Hang Khuc, Dong Thanh Nguyen, Dinh Quoc von Meding, Jason Nguyen, Lam Phuong Luu, Chinh |
description | Landslide is a severe geohazard in many mountainous areas of Vietnam during the rainy season. They directly threaten human lives and properties every year. Landslide susceptibility maps are useful tools for risk mitigation, land-use planning, and early warning systems for local areas. It is necessary to update these maps continuously because of the complexity of landslide events. This fact requires further extending the approach techniques with practical implications. Therefore, this study aimed to develop landslide susceptibility prediction maps based on advanced machine learning (ML) techniques. Five state-of-the-art hybrid ML models were developed: bagging MLP, dagging MLP, decorate MLP, rotation forest MLP, and random subspace MLP with multilayer perceptron (MLP) as a base classifier. Sixteen causative factors were collected to build landslide susceptibility maps based on the relationship between historical landslide locations and specific local geo-environmental conditions. The model performance was verified using various statistical indexes. Based on the area under ROC curve (AUC) analysis results of the testing dataset, the rotation forest MLP model has the greatest predictive accuracy of AUC = 0.818. It is followed by the decorate MLP and bagging MLP (AUC = 0.804), the random subspace MLP model (AUC = 0.796), the dagging MLP (AUC = 0.789), and the single MLP (AUC = 0.698). The results of this study can be applied effectively to other mountainous regions to mitigate the risk of landslides. |
doi_str_mv | 10.1007/s11069-022-05764-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2793269423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793269423</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-3ca84fce3d327234056990d489572f1327bbabc5ac88802296755e5794ff0f93</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAraM3r8nEnRRfUHBhEXchk2RqyrycTJX-e1NHcOfqwuU759x7EDoncEUA5HUkBHKVAaUZCJnzjB2gGRGSZVBwOEQzUJRkwODtGJ3EuAEgJKdqhuzStC7WwXkct9H6fgxlqMO4w_3gXbBj6FrcmL4P7Rp_hfEdG_dpWusd9m30TVl73HTO1_EGvyR0aZKw-wyJuMSvwY-taU7RUWXq6M9-5xyt7u9Wi8ds-fzwtLhdZoZxOmbMmoJX1jPHqKSMg8iVAscLJSStSFqWpSmtMLYoivSpyqUQXkjFqwoqxeboYrJNB3xsfRz1ptsObUrUVCpGc8UpSxSdKDt0MQ6-0v0QGjPsNAG971JPXeqUoH-61HsRm0Qxwe3aD3_W_6i-AfxMd1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793269423</pqid></control><display><type>article</type><title>Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam</title><source>Springer Nature - Complete Springer Journals</source><creator>Bui, Quynh Duy ; Ha, Hang ; Khuc, Dong Thanh ; Nguyen, Dinh Quoc ; von Meding, Jason ; Nguyen, Lam Phuong ; Luu, Chinh</creator><creatorcontrib>Bui, Quynh Duy ; Ha, Hang ; Khuc, Dong Thanh ; Nguyen, Dinh Quoc ; von Meding, Jason ; Nguyen, Lam Phuong ; Luu, Chinh</creatorcontrib><description>Landslide is a severe geohazard in many mountainous areas of Vietnam during the rainy season. They directly threaten human lives and properties every year. Landslide susceptibility maps are useful tools for risk mitigation, land-use planning, and early warning systems for local areas. It is necessary to update these maps continuously because of the complexity of landslide events. This fact requires further extending the approach techniques with practical implications. Therefore, this study aimed to develop landslide susceptibility prediction maps based on advanced machine learning (ML) techniques. Five state-of-the-art hybrid ML models were developed: bagging MLP, dagging MLP, decorate MLP, rotation forest MLP, and random subspace MLP with multilayer perceptron (MLP) as a base classifier. Sixteen causative factors were collected to build landslide susceptibility maps based on the relationship between historical landslide locations and specific local geo-environmental conditions. The model performance was verified using various statistical indexes. Based on the area under ROC curve (AUC) analysis results of the testing dataset, the rotation forest MLP model has the greatest predictive accuracy of AUC = 0.818. It is followed by the decorate MLP and bagging MLP (AUC = 0.804), the random subspace MLP model (AUC = 0.796), the dagging MLP (AUC = 0.789), and the single MLP (AUC = 0.698). The results of this study can be applied effectively to other mountainous regions to mitigate the risk of landslides.</description><identifier>ISSN: 0921-030X</identifier><identifier>EISSN: 1573-0840</identifier><identifier>DOI: 10.1007/s11069-022-05764-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bagging ; Civil Engineering ; Early warning systems ; Earth and Environmental Science ; Earth Sciences ; Environmental conditions ; Environmental Management ; Environmental risk ; Geological hazards ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Land use ; Land use management ; Land use planning ; Landslides ; Landslides & mudslides ; Machine learning ; Mitigation ; Modelling ; Mountain regions ; Mountainous areas ; Mountains ; Multilayer perceptrons ; Natural Hazards ; Original Paper ; Performance indices ; Rainy season ; Risk reduction ; Rotation ; Susceptibility ; Warning systems ; Wet season</subject><ispartof>Natural hazards (Dordrecht), 2023-03, Vol.116 (2), p.2283-2309</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-3ca84fce3d327234056990d489572f1327bbabc5ac88802296755e5794ff0f93</citedby><cites>FETCH-LOGICAL-a342t-3ca84fce3d327234056990d489572f1327bbabc5ac88802296755e5794ff0f93</cites><orcidid>0000-0003-1489-8918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11069-022-05764-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11069-022-05764-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bui, Quynh Duy</creatorcontrib><creatorcontrib>Ha, Hang</creatorcontrib><creatorcontrib>Khuc, Dong Thanh</creatorcontrib><creatorcontrib>Nguyen, Dinh Quoc</creatorcontrib><creatorcontrib>von Meding, Jason</creatorcontrib><creatorcontrib>Nguyen, Lam Phuong</creatorcontrib><creatorcontrib>Luu, Chinh</creatorcontrib><title>Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam</title><title>Natural hazards (Dordrecht)</title><addtitle>Nat Hazards</addtitle><description>Landslide is a severe geohazard in many mountainous areas of Vietnam during the rainy season. They directly threaten human lives and properties every year. Landslide susceptibility maps are useful tools for risk mitigation, land-use planning, and early warning systems for local areas. It is necessary to update these maps continuously because of the complexity of landslide events. This fact requires further extending the approach techniques with practical implications. Therefore, this study aimed to develop landslide susceptibility prediction maps based on advanced machine learning (ML) techniques. Five state-of-the-art hybrid ML models were developed: bagging MLP, dagging MLP, decorate MLP, rotation forest MLP, and random subspace MLP with multilayer perceptron (MLP) as a base classifier. Sixteen causative factors were collected to build landslide susceptibility maps based on the relationship between historical landslide locations and specific local geo-environmental conditions. The model performance was verified using various statistical indexes. Based on the area under ROC curve (AUC) analysis results of the testing dataset, the rotation forest MLP model has the greatest predictive accuracy of AUC = 0.818. It is followed by the decorate MLP and bagging MLP (AUC = 0.804), the random subspace MLP model (AUC = 0.796), the dagging MLP (AUC = 0.789), and the single MLP (AUC = 0.698). The results of this study can be applied effectively to other mountainous regions to mitigate the risk of landslides.</description><subject>Bagging</subject><subject>Civil Engineering</subject><subject>Early warning systems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental conditions</subject><subject>Environmental Management</subject><subject>Environmental risk</subject><subject>Geological hazards</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Land use</subject><subject>Land use management</subject><subject>Land use planning</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Machine learning</subject><subject>Mitigation</subject><subject>Modelling</subject><subject>Mountain regions</subject><subject>Mountainous areas</subject><subject>Mountains</subject><subject>Multilayer perceptrons</subject><subject>Natural Hazards</subject><subject>Original Paper</subject><subject>Performance indices</subject><subject>Rainy season</subject><subject>Risk reduction</subject><subject>Rotation</subject><subject>Susceptibility</subject><subject>Warning systems</subject><subject>Wet season</subject><issn>0921-030X</issn><issn>1573-0840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXAraM3r8nEnRRfUHBhEXchk2RqyrycTJX-e1NHcOfqwuU759x7EDoncEUA5HUkBHKVAaUZCJnzjB2gGRGSZVBwOEQzUJRkwODtGJ3EuAEgJKdqhuzStC7WwXkct9H6fgxlqMO4w_3gXbBj6FrcmL4P7Rp_hfEdG_dpWusd9m30TVl73HTO1_EGvyR0aZKw-wyJuMSvwY-taU7RUWXq6M9-5xyt7u9Wi8ds-fzwtLhdZoZxOmbMmoJX1jPHqKSMg8iVAscLJSStSFqWpSmtMLYoivSpyqUQXkjFqwoqxeboYrJNB3xsfRz1ptsObUrUVCpGc8UpSxSdKDt0MQ6-0v0QGjPsNAG971JPXeqUoH-61HsRm0Qxwe3aD3_W_6i-AfxMd1Y</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Bui, Quynh Duy</creator><creator>Ha, Hang</creator><creator>Khuc, Dong Thanh</creator><creator>Nguyen, Dinh Quoc</creator><creator>von Meding, Jason</creator><creator>Nguyen, Lam Phuong</creator><creator>Luu, Chinh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1489-8918</orcidid></search><sort><creationdate>20230301</creationdate><title>Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam</title><author>Bui, Quynh Duy ; Ha, Hang ; Khuc, Dong Thanh ; Nguyen, Dinh Quoc ; von Meding, Jason ; Nguyen, Lam Phuong ; Luu, Chinh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-3ca84fce3d327234056990d489572f1327bbabc5ac88802296755e5794ff0f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bagging</topic><topic>Civil Engineering</topic><topic>Early warning systems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental conditions</topic><topic>Environmental Management</topic><topic>Environmental risk</topic><topic>Geological hazards</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Land use</topic><topic>Land use management</topic><topic>Land use planning</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Machine learning</topic><topic>Mitigation</topic><topic>Modelling</topic><topic>Mountain regions</topic><topic>Mountainous areas</topic><topic>Mountains</topic><topic>Multilayer perceptrons</topic><topic>Natural Hazards</topic><topic>Original Paper</topic><topic>Performance indices</topic><topic>Rainy season</topic><topic>Risk reduction</topic><topic>Rotation</topic><topic>Susceptibility</topic><topic>Warning systems</topic><topic>Wet season</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Quynh Duy</creatorcontrib><creatorcontrib>Ha, Hang</creatorcontrib><creatorcontrib>Khuc, Dong Thanh</creatorcontrib><creatorcontrib>Nguyen, Dinh Quoc</creatorcontrib><creatorcontrib>von Meding, Jason</creatorcontrib><creatorcontrib>Nguyen, Lam Phuong</creatorcontrib><creatorcontrib>Luu, Chinh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Natural hazards (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, Quynh Duy</au><au>Ha, Hang</au><au>Khuc, Dong Thanh</au><au>Nguyen, Dinh Quoc</au><au>von Meding, Jason</au><au>Nguyen, Lam Phuong</au><au>Luu, Chinh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam</atitle><jtitle>Natural hazards (Dordrecht)</jtitle><stitle>Nat Hazards</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>116</volume><issue>2</issue><spage>2283</spage><epage>2309</epage><pages>2283-2309</pages><issn>0921-030X</issn><eissn>1573-0840</eissn><abstract>Landslide is a severe geohazard in many mountainous areas of Vietnam during the rainy season. They directly threaten human lives and properties every year. Landslide susceptibility maps are useful tools for risk mitigation, land-use planning, and early warning systems for local areas. It is necessary to update these maps continuously because of the complexity of landslide events. This fact requires further extending the approach techniques with practical implications. Therefore, this study aimed to develop landslide susceptibility prediction maps based on advanced machine learning (ML) techniques. Five state-of-the-art hybrid ML models were developed: bagging MLP, dagging MLP, decorate MLP, rotation forest MLP, and random subspace MLP with multilayer perceptron (MLP) as a base classifier. Sixteen causative factors were collected to build landslide susceptibility maps based on the relationship between historical landslide locations and specific local geo-environmental conditions. The model performance was verified using various statistical indexes. Based on the area under ROC curve (AUC) analysis results of the testing dataset, the rotation forest MLP model has the greatest predictive accuracy of AUC = 0.818. It is followed by the decorate MLP and bagging MLP (AUC = 0.804), the random subspace MLP model (AUC = 0.796), the dagging MLP (AUC = 0.789), and the single MLP (AUC = 0.698). The results of this study can be applied effectively to other mountainous regions to mitigate the risk of landslides.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11069-022-05764-3</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-1489-8918</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-030X |
ispartof | Natural hazards (Dordrecht), 2023-03, Vol.116 (2), p.2283-2309 |
issn | 0921-030X 1573-0840 |
language | eng |
recordid | cdi_proquest_journals_2793269423 |
source | Springer Nature - Complete Springer Journals |
subjects | Bagging Civil Engineering Early warning systems Earth and Environmental Science Earth Sciences Environmental conditions Environmental Management Environmental risk Geological hazards Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Land use Land use management Land use planning Landslides Landslides & mudslides Machine learning Mitigation Modelling Mountain regions Mountainous areas Mountains Multilayer perceptrons Natural Hazards Original Paper Performance indices Rainy season Risk reduction Rotation Susceptibility Warning systems Wet season |
title | Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landslide%20susceptibility%20prediction%20mapping%20with%20advanced%20ensemble%20models:%20Son%20La%20province,%20Vietnam&rft.jtitle=Natural%20hazards%20(Dordrecht)&rft.au=Bui,%20Quynh%20Duy&rft.date=2023-03-01&rft.volume=116&rft.issue=2&rft.spage=2283&rft.epage=2309&rft.pages=2283-2309&rft.issn=0921-030X&rft.eissn=1573-0840&rft_id=info:doi/10.1007/s11069-022-05764-3&rft_dat=%3Cproquest_cross%3E2793269423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793269423&rft_id=info:pmid/&rfr_iscdi=true |