Gaussian-Based Parametric Bijections For Automatic Projection Filters

The automatic projection filter is a recently developed numerical method for projection filtering that leverages sparse-grid integration and automatic differentiation. However, its accuracy is highly sensitive to the accuracy of the cumulant-generating function computed via the sparse-grid integrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Emzir, Muhammad F, Zhao, Zheng, Cheded, Lahouari, Särkkä, Simo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Emzir, Muhammad F
Zhao, Zheng
Cheded, Lahouari
Särkkä, Simo
description The automatic projection filter is a recently developed numerical method for projection filtering that leverages sparse-grid integration and automatic differentiation. However, its accuracy is highly sensitive to the accuracy of the cumulant-generating function computed via the sparse-grid integration, which in turn is also sensitive to the choice of the bijection from the canonical hypercube to the state space. In this paper, we propose two new adaptive parametric bijections for the automatic projection filter. The first bijection relies on the minimization of Kullback--Leibler divergence, whereas the second method employs the sparse-grid Gauss--Hermite quadrature. The two new bijections allow the sparse-grid nodes to adaptively move within the high-density region of the state space, resulting in a substantially improved approximation while using only a small number of quadrature nodes. The practical applicability of the methodology is illustrated in three simulated nonlinear filtering problems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2793243588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793243588</sourcerecordid><originalsourceid>FETCH-proquest_journals_27932435883</originalsourceid><addsrcrecordid>eNqNyrEOgjAQgOHGxESivEMTZ5J6BamjGNCRwZ1csCYlQPWufX8ZeACnf_j-jUhA61NmcoCdSJkHpRScSygKnYj6jpHZ4ZxVyPYlWyScbCDXy8oNtg_OzywbT_Iag58wLNCSX0U2bgyW-CC2bxzZpmv34tjUz9sj-5D_RsuhG3ykeaEOyouGXBfG6P-uH3-dOw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793243588</pqid></control><display><type>article</type><title>Gaussian-Based Parametric Bijections For Automatic Projection Filters</title><source>Free E- Journals</source><creator>Emzir, Muhammad F ; Zhao, Zheng ; Cheded, Lahouari ; Särkkä, Simo</creator><creatorcontrib>Emzir, Muhammad F ; Zhao, Zheng ; Cheded, Lahouari ; Särkkä, Simo</creatorcontrib><description>The automatic projection filter is a recently developed numerical method for projection filtering that leverages sparse-grid integration and automatic differentiation. However, its accuracy is highly sensitive to the accuracy of the cumulant-generating function computed via the sparse-grid integration, which in turn is also sensitive to the choice of the bijection from the canonical hypercube to the state space. In this paper, we propose two new adaptive parametric bijections for the automatic projection filter. The first bijection relies on the minimization of Kullback--Leibler divergence, whereas the second method employs the sparse-grid Gauss--Hermite quadrature. The two new bijections allow the sparse-grid nodes to adaptively move within the high-density region of the state space, resulting in a substantially improved approximation while using only a small number of quadrature nodes. The practical applicability of the methodology is illustrated in three simulated nonlinear filtering problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Divergence ; Filtration ; Hypercubes ; Nodes ; Numerical methods ; Quadratures</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Emzir, Muhammad F</creatorcontrib><creatorcontrib>Zhao, Zheng</creatorcontrib><creatorcontrib>Cheded, Lahouari</creatorcontrib><creatorcontrib>Särkkä, Simo</creatorcontrib><title>Gaussian-Based Parametric Bijections For Automatic Projection Filters</title><title>arXiv.org</title><description>The automatic projection filter is a recently developed numerical method for projection filtering that leverages sparse-grid integration and automatic differentiation. However, its accuracy is highly sensitive to the accuracy of the cumulant-generating function computed via the sparse-grid integration, which in turn is also sensitive to the choice of the bijection from the canonical hypercube to the state space. In this paper, we propose two new adaptive parametric bijections for the automatic projection filter. The first bijection relies on the minimization of Kullback--Leibler divergence, whereas the second method employs the sparse-grid Gauss--Hermite quadrature. The two new bijections allow the sparse-grid nodes to adaptively move within the high-density region of the state space, resulting in a substantially improved approximation while using only a small number of quadrature nodes. The practical applicability of the methodology is illustrated in three simulated nonlinear filtering problems.</description><subject>Accuracy</subject><subject>Divergence</subject><subject>Filtration</subject><subject>Hypercubes</subject><subject>Nodes</subject><subject>Numerical methods</subject><subject>Quadratures</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEOgjAQgOHGxESivEMTZ5J6BamjGNCRwZ1csCYlQPWufX8ZeACnf_j-jUhA61NmcoCdSJkHpRScSygKnYj6jpHZ4ZxVyPYlWyScbCDXy8oNtg_OzywbT_Iag58wLNCSX0U2bgyW-CC2bxzZpmv34tjUz9sj-5D_RsuhG3ykeaEOyouGXBfG6P-uH3-dOw0</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>Emzir, Muhammad F</creator><creator>Zhao, Zheng</creator><creator>Cheded, Lahouari</creator><creator>Särkkä, Simo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230921</creationdate><title>Gaussian-Based Parametric Bijections For Automatic Projection Filters</title><author>Emzir, Muhammad F ; Zhao, Zheng ; Cheded, Lahouari ; Särkkä, Simo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27932435883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Divergence</topic><topic>Filtration</topic><topic>Hypercubes</topic><topic>Nodes</topic><topic>Numerical methods</topic><topic>Quadratures</topic><toplevel>online_resources</toplevel><creatorcontrib>Emzir, Muhammad F</creatorcontrib><creatorcontrib>Zhao, Zheng</creatorcontrib><creatorcontrib>Cheded, Lahouari</creatorcontrib><creatorcontrib>Särkkä, Simo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emzir, Muhammad F</au><au>Zhao, Zheng</au><au>Cheded, Lahouari</au><au>Särkkä, Simo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Gaussian-Based Parametric Bijections For Automatic Projection Filters</atitle><jtitle>arXiv.org</jtitle><date>2023-09-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The automatic projection filter is a recently developed numerical method for projection filtering that leverages sparse-grid integration and automatic differentiation. However, its accuracy is highly sensitive to the accuracy of the cumulant-generating function computed via the sparse-grid integration, which in turn is also sensitive to the choice of the bijection from the canonical hypercube to the state space. In this paper, we propose two new adaptive parametric bijections for the automatic projection filter. The first bijection relies on the minimization of Kullback--Leibler divergence, whereas the second method employs the sparse-grid Gauss--Hermite quadrature. The two new bijections allow the sparse-grid nodes to adaptively move within the high-density region of the state space, resulting in a substantially improved approximation while using only a small number of quadrature nodes. The practical applicability of the methodology is illustrated in three simulated nonlinear filtering problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2793243588
source Free E- Journals
subjects Accuracy
Divergence
Filtration
Hypercubes
Nodes
Numerical methods
Quadratures
title Gaussian-Based Parametric Bijections For Automatic Projection Filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Gaussian-Based%20Parametric%20Bijections%20For%20Automatic%20Projection%20Filters&rft.jtitle=arXiv.org&rft.au=Emzir,%20Muhammad%20F&rft.date=2023-09-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2793243588%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793243588&rft_id=info:pmid/&rfr_iscdi=true