Intelligent detection of traffic lights using morphological operations
Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques u...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2475 |
creator | Touma, Teeba A. Abbas, Heba Kh Mohamad, Haidar J. Al-Zuky, Ali A. |
description | Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques used to recognize traffic lights from the recorded video. Segmentation technique based threshold used to distinguish each color of the traffic signal within a threshold for each color. The traffic signal color distinguished using morphological operations. The regionprob function used to calculate the area of traffic light within colored image (cod is available). From these steps, the decision of recognizing the light is ON or OFF is determined effectively and the traffic light is recognized. The results show the efficiency and quality of the proposed system in accurate detection of traffic signals at different times and environment conditions and within different shooting distances. |
doi_str_mv | 10.1063/5.0102888 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2793230533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793230533</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2038-bcc28963e2e803d58a1612f146a1aa3798337e5e840652ec5a7b68dbc9801c843</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCN2HrJLP52KMUq4WCFwVvIc1m25TtZk1SwX9vawvePM1hnved4SHklsKEgsAHPgEKTCl1RkaUc1pKQcU5GQHUVckq_LgkVyltAFgtpRqR2bzPruv8yvW5aFx2NvvQF6EtcjRt622x361zKnbJ96tiG-KwDl1YeWu6IgwumgOfrslFa7rkbk5zTN5nT2_Tl3Lx-jyfPi7KgQGqcmktU7VAx5wCbLgyVFDW0koYagzKWiFKx52qQHDmLDdyKVSztLUCalWFY3J37B1i-Ny5lPUm7GK_P6mZrJEhcMQ9dX-kkvX590E9RL818Vt_hai5PjnSQ9P-B1PQB6l_AfwB4IVogQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2793230533</pqid></control><display><type>conference_proceeding</type><title>Intelligent detection of traffic lights using morphological operations</title><source>AIP Journals Complete</source><creator>Touma, Teeba A. ; Abbas, Heba Kh ; Mohamad, Haidar J. ; Al-Zuky, Ali A.</creator><contributor>Mubarak, Tahseen Hussein ; Khalaf, Bashar Ahmed</contributor><creatorcontrib>Touma, Teeba A. ; Abbas, Heba Kh ; Mohamad, Haidar J. ; Al-Zuky, Ali A. ; Mubarak, Tahseen Hussein ; Khalaf, Bashar Ahmed</creatorcontrib><description>Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques used to recognize traffic lights from the recorded video. Segmentation technique based threshold used to distinguish each color of the traffic signal within a threshold for each color. The traffic signal color distinguished using morphological operations. The regionprob function used to calculate the area of traffic light within colored image (cod is available). From these steps, the decision of recognizing the light is ON or OFF is determined effectively and the traffic light is recognized. The results show the efficiency and quality of the proposed system in accurate detection of traffic signals at different times and environment conditions and within different shooting distances.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0102888</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Color ; Digital imaging ; Image processing ; Image segmentation ; Traffic signals ; Weather</subject><ispartof>AIP conference proceedings, 2023, Vol.2475 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0102888$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76130</link.rule.ids></links><search><contributor>Mubarak, Tahseen Hussein</contributor><contributor>Khalaf, Bashar Ahmed</contributor><creatorcontrib>Touma, Teeba A.</creatorcontrib><creatorcontrib>Abbas, Heba Kh</creatorcontrib><creatorcontrib>Mohamad, Haidar J.</creatorcontrib><creatorcontrib>Al-Zuky, Ali A.</creatorcontrib><title>Intelligent detection of traffic lights using morphological operations</title><title>AIP conference proceedings</title><description>Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques used to recognize traffic lights from the recorded video. Segmentation technique based threshold used to distinguish each color of the traffic signal within a threshold for each color. The traffic signal color distinguished using morphological operations. The regionprob function used to calculate the area of traffic light within colored image (cod is available). From these steps, the decision of recognizing the light is ON or OFF is determined effectively and the traffic light is recognized. The results show the efficiency and quality of the proposed system in accurate detection of traffic signals at different times and environment conditions and within different shooting distances.</description><subject>Color</subject><subject>Digital imaging</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Traffic signals</subject><subject>Weather</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCN2HrJLP52KMUq4WCFwVvIc1m25TtZk1SwX9vawvePM1hnved4SHklsKEgsAHPgEKTCl1RkaUc1pKQcU5GQHUVckq_LgkVyltAFgtpRqR2bzPruv8yvW5aFx2NvvQF6EtcjRt622x361zKnbJ96tiG-KwDl1YeWu6IgwumgOfrslFa7rkbk5zTN5nT2_Tl3Lx-jyfPi7KgQGqcmktU7VAx5wCbLgyVFDW0koYagzKWiFKx52qQHDmLDdyKVSztLUCalWFY3J37B1i-Ny5lPUm7GK_P6mZrJEhcMQ9dX-kkvX590E9RL818Vt_hai5PjnSQ9P-B1PQB6l_AfwB4IVogQ</recordid><startdate>20230331</startdate><enddate>20230331</enddate><creator>Touma, Teeba A.</creator><creator>Abbas, Heba Kh</creator><creator>Mohamad, Haidar J.</creator><creator>Al-Zuky, Ali A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230331</creationdate><title>Intelligent detection of traffic lights using morphological operations</title><author>Touma, Teeba A. ; Abbas, Heba Kh ; Mohamad, Haidar J. ; Al-Zuky, Ali A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2038-bcc28963e2e803d58a1612f146a1aa3798337e5e840652ec5a7b68dbc9801c843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Color</topic><topic>Digital imaging</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Traffic signals</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Touma, Teeba A.</creatorcontrib><creatorcontrib>Abbas, Heba Kh</creatorcontrib><creatorcontrib>Mohamad, Haidar J.</creatorcontrib><creatorcontrib>Al-Zuky, Ali A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Touma, Teeba A.</au><au>Abbas, Heba Kh</au><au>Mohamad, Haidar J.</au><au>Al-Zuky, Ali A.</au><au>Mubarak, Tahseen Hussein</au><au>Khalaf, Bashar Ahmed</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligent detection of traffic lights using morphological operations</atitle><btitle>AIP conference proceedings</btitle><date>2023-03-31</date><risdate>2023</risdate><volume>2475</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques used to recognize traffic lights from the recorded video. Segmentation technique based threshold used to distinguish each color of the traffic signal within a threshold for each color. The traffic signal color distinguished using morphological operations. The regionprob function used to calculate the area of traffic light within colored image (cod is available). From these steps, the decision of recognizing the light is ON or OFF is determined effectively and the traffic light is recognized. The results show the efficiency and quality of the proposed system in accurate detection of traffic signals at different times and environment conditions and within different shooting distances.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0102888</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2475 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2793230533 |
source | AIP Journals Complete |
subjects | Color Digital imaging Image processing Image segmentation Traffic signals Weather |
title | Intelligent detection of traffic lights using morphological operations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligent%20detection%20of%20traffic%20lights%20using%20morphological%20operations&rft.btitle=AIP%20conference%20proceedings&rft.au=Touma,%20Teeba%20A.&rft.date=2023-03-31&rft.volume=2475&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0102888&rft_dat=%3Cproquest_scita%3E2793230533%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793230533&rft_id=info:pmid/&rfr_iscdi=true |