Intelligent detection of traffic lights using morphological operations

Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Touma, Teeba A., Abbas, Heba Kh, Mohamad, Haidar J., Al-Zuky, Ali A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2475
creator Touma, Teeba A.
Abbas, Heba Kh
Mohamad, Haidar J.
Al-Zuky, Ali A.
description Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques used to recognize traffic lights from the recorded video. Segmentation technique based threshold used to distinguish each color of the traffic signal within a threshold for each color. The traffic signal color distinguished using morphological operations. The regionprob function used to calculate the area of traffic light within colored image (cod is available). From these steps, the decision of recognizing the light is ON or OFF is determined effectively and the traffic light is recognized. The results show the efficiency and quality of the proposed system in accurate detection of traffic signals at different times and environment conditions and within different shooting distances.
doi_str_mv 10.1063/5.0102888
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2793230533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793230533</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2038-bcc28963e2e803d58a1612f146a1aa3798337e5e840652ec5a7b68dbc9801c843</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_8GCN2HrJLP52KMUq4WCFwVvIc1m25TtZk1SwX9vawvePM1hnved4SHklsKEgsAHPgEKTCl1RkaUc1pKQcU5GQHUVckq_LgkVyltAFgtpRqR2bzPruv8yvW5aFx2NvvQF6EtcjRt622x361zKnbJ96tiG-KwDl1YeWu6IgwumgOfrslFa7rkbk5zTN5nT2_Tl3Lx-jyfPi7KgQGqcmktU7VAx5wCbLgyVFDW0koYagzKWiFKx52qQHDmLDdyKVSztLUCalWFY3J37B1i-Ny5lPUm7GK_P6mZrJEhcMQ9dX-kkvX590E9RL818Vt_hai5PjnSQ9P-B1PQB6l_AfwB4IVogQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2793230533</pqid></control><display><type>conference_proceeding</type><title>Intelligent detection of traffic lights using morphological operations</title><source>AIP Journals Complete</source><creator>Touma, Teeba A. ; Abbas, Heba Kh ; Mohamad, Haidar J. ; Al-Zuky, Ali A.</creator><contributor>Mubarak, Tahseen Hussein ; Khalaf, Bashar Ahmed</contributor><creatorcontrib>Touma, Teeba A. ; Abbas, Heba Kh ; Mohamad, Haidar J. ; Al-Zuky, Ali A. ; Mubarak, Tahseen Hussein ; Khalaf, Bashar Ahmed</creatorcontrib><description>Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques used to recognize traffic lights from the recorded video. Segmentation technique based threshold used to distinguish each color of the traffic signal within a threshold for each color. The traffic signal color distinguished using morphological operations. The regionprob function used to calculate the area of traffic light within colored image (cod is available). From these steps, the decision of recognizing the light is ON or OFF is determined effectively and the traffic light is recognized. The results show the efficiency and quality of the proposed system in accurate detection of traffic signals at different times and environment conditions and within different shooting distances.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0102888</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Color ; Digital imaging ; Image processing ; Image segmentation ; Traffic signals ; Weather</subject><ispartof>AIP conference proceedings, 2023, Vol.2475 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0102888$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4497,23910,23911,25119,27903,27904,76130</link.rule.ids></links><search><contributor>Mubarak, Tahseen Hussein</contributor><contributor>Khalaf, Bashar Ahmed</contributor><creatorcontrib>Touma, Teeba A.</creatorcontrib><creatorcontrib>Abbas, Heba Kh</creatorcontrib><creatorcontrib>Mohamad, Haidar J.</creatorcontrib><creatorcontrib>Al-Zuky, Ali A.</creatorcontrib><title>Intelligent detection of traffic lights using morphological operations</title><title>AIP conference proceedings</title><description>Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques used to recognize traffic lights from the recorded video. Segmentation technique based threshold used to distinguish each color of the traffic signal within a threshold for each color. The traffic signal color distinguished using morphological operations. The regionprob function used to calculate the area of traffic light within colored image (cod is available). From these steps, the decision of recognizing the light is ON or OFF is determined effectively and the traffic light is recognized. The results show the efficiency and quality of the proposed system in accurate detection of traffic signals at different times and environment conditions and within different shooting distances.</description><subject>Color</subject><subject>Digital imaging</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Traffic signals</subject><subject>Weather</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_8GCN2HrJLP52KMUq4WCFwVvIc1m25TtZk1SwX9vawvePM1hnved4SHklsKEgsAHPgEKTCl1RkaUc1pKQcU5GQHUVckq_LgkVyltAFgtpRqR2bzPruv8yvW5aFx2NvvQF6EtcjRt622x361zKnbJ96tiG-KwDl1YeWu6IgwumgOfrslFa7rkbk5zTN5nT2_Tl3Lx-jyfPi7KgQGqcmktU7VAx5wCbLgyVFDW0koYagzKWiFKx52qQHDmLDdyKVSztLUCalWFY3J37B1i-Ny5lPUm7GK_P6mZrJEhcMQ9dX-kkvX590E9RL818Vt_hai5PjnSQ9P-B1PQB6l_AfwB4IVogQ</recordid><startdate>20230331</startdate><enddate>20230331</enddate><creator>Touma, Teeba A.</creator><creator>Abbas, Heba Kh</creator><creator>Mohamad, Haidar J.</creator><creator>Al-Zuky, Ali A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230331</creationdate><title>Intelligent detection of traffic lights using morphological operations</title><author>Touma, Teeba A. ; Abbas, Heba Kh ; Mohamad, Haidar J. ; Al-Zuky, Ali A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2038-bcc28963e2e803d58a1612f146a1aa3798337e5e840652ec5a7b68dbc9801c843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Color</topic><topic>Digital imaging</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Traffic signals</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Touma, Teeba A.</creatorcontrib><creatorcontrib>Abbas, Heba Kh</creatorcontrib><creatorcontrib>Mohamad, Haidar J.</creatorcontrib><creatorcontrib>Al-Zuky, Ali A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Touma, Teeba A.</au><au>Abbas, Heba Kh</au><au>Mohamad, Haidar J.</au><au>Al-Zuky, Ali A.</au><au>Mubarak, Tahseen Hussein</au><au>Khalaf, Bashar Ahmed</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Intelligent detection of traffic lights using morphological operations</atitle><btitle>AIP conference proceedings</btitle><date>2023-03-31</date><risdate>2023</risdate><volume>2475</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Traffic lights recognition and detection considered an important step in the advanced driver assistance techniques. A smart system designed to identify traffic signals at the main and secondary road junctions at different cities and different weather conditions. Digital image processing techniques used to recognize traffic lights from the recorded video. Segmentation technique based threshold used to distinguish each color of the traffic signal within a threshold for each color. The traffic signal color distinguished using morphological operations. The regionprob function used to calculate the area of traffic light within colored image (cod is available). From these steps, the decision of recognizing the light is ON or OFF is determined effectively and the traffic light is recognized. The results show the efficiency and quality of the proposed system in accurate detection of traffic signals at different times and environment conditions and within different shooting distances.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0102888</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2475 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2793230533
source AIP Journals Complete
subjects Color
Digital imaging
Image processing
Image segmentation
Traffic signals
Weather
title Intelligent detection of traffic lights using morphological operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Intelligent%20detection%20of%20traffic%20lights%20using%20morphological%20operations&rft.btitle=AIP%20conference%20proceedings&rft.au=Touma,%20Teeba%20A.&rft.date=2023-03-31&rft.volume=2475&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0102888&rft_dat=%3Cproquest_scita%3E2793230533%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793230533&rft_id=info:pmid/&rfr_iscdi=true