Offline and Online Objective Reduction via Gaussian Mixture Model Clustering
The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irreg...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2023-04, Vol.27 (2), p.341-354 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 354 |
---|---|
container_issue | 2 |
container_start_page | 341 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 27 |
creator | Li, Genghui Wang, Zhenkun Zhang, Qingfu Sun, Jianyong |
description | The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irregular, one single set of essential objectives may not be efficient for objective reduction. This article proposes to produce several different sets of essential objectives in objective reduction. More specifically, we use the Gaussian mixture model clustering to classify the obtained nondominated front into different subsets and perform objective reduction on each subset. Both an offline objective reduction method and an online objective reduction method are developed. The experimental results indicate that our proposed methods work well for MaOPs with degenerate or nondegenerate PFs. |
doi_str_mv | 10.1109/TEVC.2022.3168836 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2793208471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760706</ieee_id><sourcerecordid>2793208471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b0f5f49f0e54eb5783cd3d17db98e3f10900b4e8b91945d86db85af8528b26463</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ06j2QeSym1Ci0BqeJuyGTuyJSY1JlE9N-b2uLqnsU553I-hK4pmVFK9N1m8TqfMcLYjFOhFBcnaEJ1TjNCmDgdNVE6k1K9naOLlLaE0LygeoJWpfdNaAFXrcNl-ydLu4W6D1-An8ENo-pa_BUqvKyGlELV4nX47ocIeN05aPC8GVIPMbTvl-jMV02Cq-OdopeHxWb-mK3K5dP8fpXVTPM-s8QXPteeQJGDLaTiteOOSme1Au7HOYTYHJTV44LCKeGsKiqvCqYsE7ngU3R76N3F7nOA1JttN8R2fGmY1JwRlUs6uujBVccupQje7GL4qOKPocTsoZk9NLOHZo7QxszNIRMA4N-vpSCSCP4LNYZn6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793208471</pqid></control><display><type>article</type><title>Offline and Online Objective Reduction via Gaussian Mixture Model Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Genghui ; Wang, Zhenkun ; Zhang, Qingfu ; Sun, Jianyong</creator><creatorcontrib>Li, Genghui ; Wang, Zhenkun ; Zhang, Qingfu ; Sun, Jianyong</creatorcontrib><description>The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irregular, one single set of essential objectives may not be efficient for objective reduction. This article proposes to produce several different sets of essential objectives in objective reduction. More specifically, we use the Gaussian mixture model clustering to classify the obtained nondominated front into different subsets and perform objective reduction on each subset. Both an offline objective reduction method and an online objective reduction method are developed. The experimental results indicate that our proposed methods work well for MaOPs with degenerate or nondegenerate PFs.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2022.3168836</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering algorithms ; Degenerate Pareto front (PF) ; Gaussian mixture model ; many-objective optimization ; Mixtures ; Multiple objective analysis ; Object recognition ; objective reduction ; Optimization ; Probabilistic models ; Reduction ; Search problems ; Sun ; System analysis and design</subject><ispartof>IEEE transactions on evolutionary computation, 2023-04, Vol.27 (2), p.341-354</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b0f5f49f0e54eb5783cd3d17db98e3f10900b4e8b91945d86db85af8528b26463</citedby><cites>FETCH-LOGICAL-c293t-b0f5f49f0e54eb5783cd3d17db98e3f10900b4e8b91945d86db85af8528b26463</cites><orcidid>0000-0002-9188-1856 ; 0000-0002-9950-9848 ; 0000-0003-1152-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760706$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9760706$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Genghui</creatorcontrib><creatorcontrib>Wang, Zhenkun</creatorcontrib><creatorcontrib>Zhang, Qingfu</creatorcontrib><creatorcontrib>Sun, Jianyong</creatorcontrib><title>Offline and Online Objective Reduction via Gaussian Mixture Model Clustering</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irregular, one single set of essential objectives may not be efficient for objective reduction. This article proposes to produce several different sets of essential objectives in objective reduction. More specifically, we use the Gaussian mixture model clustering to classify the obtained nondominated front into different subsets and perform objective reduction on each subset. Both an offline objective reduction method and an online objective reduction method are developed. The experimental results indicate that our proposed methods work well for MaOPs with degenerate or nondegenerate PFs.</description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Degenerate Pareto front (PF)</subject><subject>Gaussian mixture model</subject><subject>many-objective optimization</subject><subject>Mixtures</subject><subject>Multiple objective analysis</subject><subject>Object recognition</subject><subject>objective reduction</subject><subject>Optimization</subject><subject>Probabilistic models</subject><subject>Reduction</subject><subject>Search problems</subject><subject>Sun</subject><subject>System analysis and design</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ06j2QeSym1Ci0BqeJuyGTuyJSY1JlE9N-b2uLqnsU553I-hK4pmVFK9N1m8TqfMcLYjFOhFBcnaEJ1TjNCmDgdNVE6k1K9naOLlLaE0LygeoJWpfdNaAFXrcNl-ydLu4W6D1-An8ENo-pa_BUqvKyGlELV4nX47ocIeN05aPC8GVIPMbTvl-jMV02Cq-OdopeHxWb-mK3K5dP8fpXVTPM-s8QXPteeQJGDLaTiteOOSme1Au7HOYTYHJTV44LCKeGsKiqvCqYsE7ngU3R76N3F7nOA1JttN8R2fGmY1JwRlUs6uujBVccupQje7GL4qOKPocTsoZk9NLOHZo7QxszNIRMA4N-vpSCSCP4LNYZn6A</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Genghui</creator><creator>Wang, Zhenkun</creator><creator>Zhang, Qingfu</creator><creator>Sun, Jianyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9188-1856</orcidid><orcidid>https://orcid.org/0000-0002-9950-9848</orcidid><orcidid>https://orcid.org/0000-0003-1152-6780</orcidid></search><sort><creationdate>20230401</creationdate><title>Offline and Online Objective Reduction via Gaussian Mixture Model Clustering</title><author>Li, Genghui ; Wang, Zhenkun ; Zhang, Qingfu ; Sun, Jianyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b0f5f49f0e54eb5783cd3d17db98e3f10900b4e8b91945d86db85af8528b26463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Degenerate Pareto front (PF)</topic><topic>Gaussian mixture model</topic><topic>many-objective optimization</topic><topic>Mixtures</topic><topic>Multiple objective analysis</topic><topic>Object recognition</topic><topic>objective reduction</topic><topic>Optimization</topic><topic>Probabilistic models</topic><topic>Reduction</topic><topic>Search problems</topic><topic>Sun</topic><topic>System analysis and design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Genghui</creatorcontrib><creatorcontrib>Wang, Zhenkun</creatorcontrib><creatorcontrib>Zhang, Qingfu</creatorcontrib><creatorcontrib>Sun, Jianyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Genghui</au><au>Wang, Zhenkun</au><au>Zhang, Qingfu</au><au>Sun, Jianyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offline and Online Objective Reduction via Gaussian Mixture Model Clustering</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>27</volume><issue>2</issue><spage>341</spage><epage>354</epage><pages>341-354</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irregular, one single set of essential objectives may not be efficient for objective reduction. This article proposes to produce several different sets of essential objectives in objective reduction. More specifically, we use the Gaussian mixture model clustering to classify the obtained nondominated front into different subsets and perform objective reduction on each subset. Both an offline objective reduction method and an online objective reduction method are developed. The experimental results indicate that our proposed methods work well for MaOPs with degenerate or nondegenerate PFs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2022.3168836</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9188-1856</orcidid><orcidid>https://orcid.org/0000-0002-9950-9848</orcidid><orcidid>https://orcid.org/0000-0003-1152-6780</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2023-04, Vol.27 (2), p.341-354 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_journals_2793208471 |
source | IEEE Electronic Library (IEL) |
subjects | Clustering Clustering algorithms Degenerate Pareto front (PF) Gaussian mixture model many-objective optimization Mixtures Multiple objective analysis Object recognition objective reduction Optimization Probabilistic models Reduction Search problems Sun System analysis and design |
title | Offline and Online Objective Reduction via Gaussian Mixture Model Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offline%20and%20Online%20Objective%20Reduction%20via%20Gaussian%20Mixture%20Model%20Clustering&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Li,%20Genghui&rft.date=2023-04-01&rft.volume=27&rft.issue=2&rft.spage=341&rft.epage=354&rft.pages=341-354&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2022.3168836&rft_dat=%3Cproquest_RIE%3E2793208471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793208471&rft_id=info:pmid/&rft_ieee_id=9760706&rfr_iscdi=true |