Offline and Online Objective Reduction via Gaussian Mixture Model Clustering

The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irreg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2023-04, Vol.27 (2), p.341-354
Hauptverfasser: Li, Genghui, Wang, Zhenkun, Zhang, Qingfu, Sun, Jianyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 2
container_start_page 341
container_title IEEE transactions on evolutionary computation
container_volume 27
creator Li, Genghui
Wang, Zhenkun
Zhang, Qingfu
Sun, Jianyong
description The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irregular, one single set of essential objectives may not be efficient for objective reduction. This article proposes to produce several different sets of essential objectives in objective reduction. More specifically, we use the Gaussian mixture model clustering to classify the obtained nondominated front into different subsets and perform objective reduction on each subset. Both an offline objective reduction method and an online objective reduction method are developed. The experimental results indicate that our proposed methods work well for MaOPs with degenerate or nondegenerate PFs.
doi_str_mv 10.1109/TEVC.2022.3168836
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2793208471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9760706</ieee_id><sourcerecordid>2793208471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b0f5f49f0e54eb5783cd3d17db98e3f10900b4e8b91945d86db85af8528b26463</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ06j2QeSym1Ci0BqeJuyGTuyJSY1JlE9N-b2uLqnsU553I-hK4pmVFK9N1m8TqfMcLYjFOhFBcnaEJ1TjNCmDgdNVE6k1K9naOLlLaE0LygeoJWpfdNaAFXrcNl-ydLu4W6D1-An8ENo-pa_BUqvKyGlELV4nX47ocIeN05aPC8GVIPMbTvl-jMV02Cq-OdopeHxWb-mK3K5dP8fpXVTPM-s8QXPteeQJGDLaTiteOOSme1Au7HOYTYHJTV44LCKeGsKiqvCqYsE7ngU3R76N3F7nOA1JttN8R2fGmY1JwRlUs6uujBVccupQje7GL4qOKPocTsoZk9NLOHZo7QxszNIRMA4N-vpSCSCP4LNYZn6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793208471</pqid></control><display><type>article</type><title>Offline and Online Objective Reduction via Gaussian Mixture Model Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Genghui ; Wang, Zhenkun ; Zhang, Qingfu ; Sun, Jianyong</creator><creatorcontrib>Li, Genghui ; Wang, Zhenkun ; Zhang, Qingfu ; Sun, Jianyong</creatorcontrib><description>The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irregular, one single set of essential objectives may not be efficient for objective reduction. This article proposes to produce several different sets of essential objectives in objective reduction. More specifically, we use the Gaussian mixture model clustering to classify the obtained nondominated front into different subsets and perform objective reduction on each subset. Both an offline objective reduction method and an online objective reduction method are developed. The experimental results indicate that our proposed methods work well for MaOPs with degenerate or nondegenerate PFs.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2022.3168836</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering algorithms ; Degenerate Pareto front (PF) ; Gaussian mixture model ; many-objective optimization ; Mixtures ; Multiple objective analysis ; Object recognition ; objective reduction ; Optimization ; Probabilistic models ; Reduction ; Search problems ; Sun ; System analysis and design</subject><ispartof>IEEE transactions on evolutionary computation, 2023-04, Vol.27 (2), p.341-354</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b0f5f49f0e54eb5783cd3d17db98e3f10900b4e8b91945d86db85af8528b26463</citedby><cites>FETCH-LOGICAL-c293t-b0f5f49f0e54eb5783cd3d17db98e3f10900b4e8b91945d86db85af8528b26463</cites><orcidid>0000-0002-9188-1856 ; 0000-0002-9950-9848 ; 0000-0003-1152-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9760706$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9760706$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Genghui</creatorcontrib><creatorcontrib>Wang, Zhenkun</creatorcontrib><creatorcontrib>Zhang, Qingfu</creatorcontrib><creatorcontrib>Sun, Jianyong</creatorcontrib><title>Offline and Online Objective Reduction via Gaussian Mixture Model Clustering</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irregular, one single set of essential objectives may not be efficient for objective reduction. This article proposes to produce several different sets of essential objectives in objective reduction. More specifically, we use the Gaussian mixture model clustering to classify the obtained nondominated front into different subsets and perform objective reduction on each subset. Both an offline objective reduction method and an online objective reduction method are developed. The experimental results indicate that our proposed methods work well for MaOPs with degenerate or nondegenerate PFs.</description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Degenerate Pareto front (PF)</subject><subject>Gaussian mixture model</subject><subject>many-objective optimization</subject><subject>Mixtures</subject><subject>Multiple objective analysis</subject><subject>Object recognition</subject><subject>objective reduction</subject><subject>Optimization</subject><subject>Probabilistic models</subject><subject>Reduction</subject><subject>Search problems</subject><subject>Sun</subject><subject>System analysis and design</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ06j2QeSym1Ci0BqeJuyGTuyJSY1JlE9N-b2uLqnsU553I-hK4pmVFK9N1m8TqfMcLYjFOhFBcnaEJ1TjNCmDgdNVE6k1K9naOLlLaE0LygeoJWpfdNaAFXrcNl-ydLu4W6D1-An8ENo-pa_BUqvKyGlELV4nX47ocIeN05aPC8GVIPMbTvl-jMV02Cq-OdopeHxWb-mK3K5dP8fpXVTPM-s8QXPteeQJGDLaTiteOOSme1Au7HOYTYHJTV44LCKeGsKiqvCqYsE7ngU3R76N3F7nOA1JttN8R2fGmY1JwRlUs6uujBVccupQje7GL4qOKPocTsoZk9NLOHZo7QxszNIRMA4N-vpSCSCP4LNYZn6A</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Genghui</creator><creator>Wang, Zhenkun</creator><creator>Zhang, Qingfu</creator><creator>Sun, Jianyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9188-1856</orcidid><orcidid>https://orcid.org/0000-0002-9950-9848</orcidid><orcidid>https://orcid.org/0000-0003-1152-6780</orcidid></search><sort><creationdate>20230401</creationdate><title>Offline and Online Objective Reduction via Gaussian Mixture Model Clustering</title><author>Li, Genghui ; Wang, Zhenkun ; Zhang, Qingfu ; Sun, Jianyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b0f5f49f0e54eb5783cd3d17db98e3f10900b4e8b91945d86db85af8528b26463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Degenerate Pareto front (PF)</topic><topic>Gaussian mixture model</topic><topic>many-objective optimization</topic><topic>Mixtures</topic><topic>Multiple objective analysis</topic><topic>Object recognition</topic><topic>objective reduction</topic><topic>Optimization</topic><topic>Probabilistic models</topic><topic>Reduction</topic><topic>Search problems</topic><topic>Sun</topic><topic>System analysis and design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Genghui</creatorcontrib><creatorcontrib>Wang, Zhenkun</creatorcontrib><creatorcontrib>Zhang, Qingfu</creatorcontrib><creatorcontrib>Sun, Jianyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Genghui</au><au>Wang, Zhenkun</au><au>Zhang, Qingfu</au><au>Sun, Jianyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offline and Online Objective Reduction via Gaussian Mixture Model Clustering</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>27</volume><issue>2</issue><spage>341</spage><epage>354</epage><pages>341-354</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The objective reduction has been regarded as a basic issue in many-objective optimization. Existing objective reduction methods identify one set of essential objectives using an approximate nondominated front. However, if the Pareto front (PF) of a many-objective optimization problem (MaOP) is irregular, one single set of essential objectives may not be efficient for objective reduction. This article proposes to produce several different sets of essential objectives in objective reduction. More specifically, we use the Gaussian mixture model clustering to classify the obtained nondominated front into different subsets and perform objective reduction on each subset. Both an offline objective reduction method and an online objective reduction method are developed. The experimental results indicate that our proposed methods work well for MaOPs with degenerate or nondegenerate PFs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2022.3168836</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9188-1856</orcidid><orcidid>https://orcid.org/0000-0002-9950-9848</orcidid><orcidid>https://orcid.org/0000-0003-1152-6780</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2023-04, Vol.27 (2), p.341-354
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_journals_2793208471
source IEEE Electronic Library (IEL)
subjects Clustering
Clustering algorithms
Degenerate Pareto front (PF)
Gaussian mixture model
many-objective optimization
Mixtures
Multiple objective analysis
Object recognition
objective reduction
Optimization
Probabilistic models
Reduction
Search problems
Sun
System analysis and design
title Offline and Online Objective Reduction via Gaussian Mixture Model Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offline%20and%20Online%20Objective%20Reduction%20via%20Gaussian%20Mixture%20Model%20Clustering&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Li,%20Genghui&rft.date=2023-04-01&rft.volume=27&rft.issue=2&rft.spage=341&rft.epage=354&rft.pages=341-354&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2022.3168836&rft_dat=%3Cproquest_RIE%3E2793208471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793208471&rft_id=info:pmid/&rft_ieee_id=9760706&rfr_iscdi=true