Lagrangian particle tracking velocimetry investigation of vortex shedding topology for oscillating heavy spherical pendulums underwater

The vortex shedding topology of a heavy pendulum oscillating in a dense fluid is investigated using time-resolved three-dimensional particle tracking velocimetry (tr-3-D-PTV). A series of experiments with eight different solid to fluid mass ratios $m^*$ in the range $[1.14, 14.95]$ and corresponding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-04, Vol.960, Article A14
Hauptverfasser: Gold, Thomas, Reiterer, Kevin, Worf, Dominik, Khosronejad, Ali, Habersack, Helmut, Sindelar, Christine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 960
creator Gold, Thomas
Reiterer, Kevin
Worf, Dominik
Khosronejad, Ali
Habersack, Helmut
Sindelar, Christine
description The vortex shedding topology of a heavy pendulum oscillating in a dense fluid is investigated using time-resolved three-dimensional particle tracking velocimetry (tr-3-D-PTV). A series of experiments with eight different solid to fluid mass ratios $m^*$ in the range $[1.14, 14.95]$ and corresponding Reynolds numbers of up to $Re \sim O(10^4)$ was conducted. The period of oscillation depends heavily on $m^*$. The relation between amplitude decay and oscillation frequency is non-monotonic, having a damping optimum at $m^* \approx 2.50$. Moreover, a novel digital object tracking (DOT) method using vorticity-magnitude iso-surfaces is implemented to analyse vortical structures. A similar vortex shedding topology is observed for various mass ratios $m^*$. Our observations show that first, a vortex ring in the pendulum's wake is formed. Soon after, the initial ring breaks down to two clearly distinguishable structures of similar size. One of the two vortices remains on the circular path of the pendulum, while the other detaches, propagates downwards, and eventually dissipates. The time when the first vortex is shed, and its initial propagation velocity, depend on $m^*$ and the momentum imparted by the spherical bob. The findings further show good agreement between the experimentally determined vortex shedding frequency and the theoretical vortex shedding time scale based on the Strouhal number.
doi_str_mv 10.1017/jfm.2023.170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2792793506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_170</cupid><sourcerecordid>2792793506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-7c2329b02bee68a8da1ee95c23e7981ddb6ac15dde9a7452cda62d159051a93f3</originalsourceid><addsrcrecordid>eNptkF9LwzAQwIMoOKdvfoCAr3Ym6doujzL8BwNf9LnckmuX2TY1Sav7BH5tMzbwRTg4uPvdHfcj5JqzGWe8uNtW7Uwwkc54wU7IhM9zmRT5PDslE8aESDgX7JxceL9ljKdMFhPys4LaQVcb6GgPLhjVIA0O1IfpajpiY5VpMbgdNd2IPpgagrEdtRUdrQv4Tf0Gtd7Dwfa2sfWOVtZR65VpmsjGxgZh3FHfb9AZBQ3tsdNDM7SeDp1G9wUB3SU5q6DxeHXMU_L--PC2fE5Wr08vy_tVotI5C0mhRCrkmok1Yr6AhQaOKLNYxUIuuNbrHBTPtEYJxTwTSkMuNM8kyzjItEqn5Oawt3f2c4gPlVs7uC6eLEUhY6QZyyN1e6CUs947rMremRbcruSs3Ksuo-pyr7qMqiM-O-LQrp3RNf5t_XfgF3-ChaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792793506</pqid></control><display><type>article</type><title>Lagrangian particle tracking velocimetry investigation of vortex shedding topology for oscillating heavy spherical pendulums underwater</title><source>Cambridge University Press Journals Complete</source><creator>Gold, Thomas ; Reiterer, Kevin ; Worf, Dominik ; Khosronejad, Ali ; Habersack, Helmut ; Sindelar, Christine</creator><creatorcontrib>Gold, Thomas ; Reiterer, Kevin ; Worf, Dominik ; Khosronejad, Ali ; Habersack, Helmut ; Sindelar, Christine</creatorcontrib><description>The vortex shedding topology of a heavy pendulum oscillating in a dense fluid is investigated using time-resolved three-dimensional particle tracking velocimetry (tr-3-D-PTV). A series of experiments with eight different solid to fluid mass ratios $m^*$ in the range $[1.14, 14.95]$ and corresponding Reynolds numbers of up to $Re \sim O(10^4)$ was conducted. The period of oscillation depends heavily on $m^*$. The relation between amplitude decay and oscillation frequency is non-monotonic, having a damping optimum at $m^* \approx 2.50$. Moreover, a novel digital object tracking (DOT) method using vorticity-magnitude iso-surfaces is implemented to analyse vortical structures. A similar vortex shedding topology is observed for various mass ratios $m^*$. Our observations show that first, a vortex ring in the pendulum's wake is formed. Soon after, the initial ring breaks down to two clearly distinguishable structures of similar size. One of the two vortices remains on the circular path of the pendulum, while the other detaches, propagates downwards, and eventually dissipates. The time when the first vortex is shed, and its initial propagation velocity, depend on $m^*$ and the momentum imparted by the spherical bob. The findings further show good agreement between the experimentally determined vortex shedding frequency and the theoretical vortex shedding time scale based on the Strouhal number.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.170</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Cameras ; Damping ; Experiments ; Fluid flow ; Fluid mechanics ; JFM Papers ; Lasers ; Mass ratios ; Measurement techniques ; Momentum ; Particle tracking ; Particle tracking velocimetry ; Pendulums ; Propagation velocity ; Ratios ; Reynolds number ; Simulation ; Spheres ; Strouhal number ; Topology ; Vortex rings ; Vortex shedding ; Vortices ; Vorticity</subject><ispartof>Journal of fluid mechanics, 2023-04, Vol.960, Article A14</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-7c2329b02bee68a8da1ee95c23e7981ddb6ac15dde9a7452cda62d159051a93f3</citedby><cites>FETCH-LOGICAL-c340t-7c2329b02bee68a8da1ee95c23e7981ddb6ac15dde9a7452cda62d159051a93f3</cites><orcidid>0000-0001-6706-0516 ; 0000-0002-6605-3549 ; 0000-0002-6289-4420 ; 0000-0002-9549-3746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023001702/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Gold, Thomas</creatorcontrib><creatorcontrib>Reiterer, Kevin</creatorcontrib><creatorcontrib>Worf, Dominik</creatorcontrib><creatorcontrib>Khosronejad, Ali</creatorcontrib><creatorcontrib>Habersack, Helmut</creatorcontrib><creatorcontrib>Sindelar, Christine</creatorcontrib><title>Lagrangian particle tracking velocimetry investigation of vortex shedding topology for oscillating heavy spherical pendulums underwater</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The vortex shedding topology of a heavy pendulum oscillating in a dense fluid is investigated using time-resolved three-dimensional particle tracking velocimetry (tr-3-D-PTV). A series of experiments with eight different solid to fluid mass ratios $m^*$ in the range $[1.14, 14.95]$ and corresponding Reynolds numbers of up to $Re \sim O(10^4)$ was conducted. The period of oscillation depends heavily on $m^*$. The relation between amplitude decay and oscillation frequency is non-monotonic, having a damping optimum at $m^* \approx 2.50$. Moreover, a novel digital object tracking (DOT) method using vorticity-magnitude iso-surfaces is implemented to analyse vortical structures. A similar vortex shedding topology is observed for various mass ratios $m^*$. Our observations show that first, a vortex ring in the pendulum's wake is formed. Soon after, the initial ring breaks down to two clearly distinguishable structures of similar size. One of the two vortices remains on the circular path of the pendulum, while the other detaches, propagates downwards, and eventually dissipates. The time when the first vortex is shed, and its initial propagation velocity, depend on $m^*$ and the momentum imparted by the spherical bob. The findings further show good agreement between the experimentally determined vortex shedding frequency and the theoretical vortex shedding time scale based on the Strouhal number.</description><subject>Cameras</subject><subject>Damping</subject><subject>Experiments</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>JFM Papers</subject><subject>Lasers</subject><subject>Mass ratios</subject><subject>Measurement techniques</subject><subject>Momentum</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Pendulums</subject><subject>Propagation velocity</subject><subject>Ratios</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Spheres</subject><subject>Strouhal number</subject><subject>Topology</subject><subject>Vortex rings</subject><subject>Vortex shedding</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkF9LwzAQwIMoOKdvfoCAr3Ym6doujzL8BwNf9LnckmuX2TY1Sav7BH5tMzbwRTg4uPvdHfcj5JqzGWe8uNtW7Uwwkc54wU7IhM9zmRT5PDslE8aESDgX7JxceL9ljKdMFhPys4LaQVcb6GgPLhjVIA0O1IfpajpiY5VpMbgdNd2IPpgagrEdtRUdrQv4Tf0Gtd7Dwfa2sfWOVtZR65VpmsjGxgZh3FHfb9AZBQ3tsdNDM7SeDp1G9wUB3SU5q6DxeHXMU_L--PC2fE5Wr08vy_tVotI5C0mhRCrkmok1Yr6AhQaOKLNYxUIuuNbrHBTPtEYJxTwTSkMuNM8kyzjItEqn5Oawt3f2c4gPlVs7uC6eLEUhY6QZyyN1e6CUs947rMremRbcruSs3Ksuo-pyr7qMqiM-O-LQrp3RNf5t_XfgF3-ChaQ</recordid><startdate>20230410</startdate><enddate>20230410</enddate><creator>Gold, Thomas</creator><creator>Reiterer, Kevin</creator><creator>Worf, Dominik</creator><creator>Khosronejad, Ali</creator><creator>Habersack, Helmut</creator><creator>Sindelar, Christine</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-6706-0516</orcidid><orcidid>https://orcid.org/0000-0002-6605-3549</orcidid><orcidid>https://orcid.org/0000-0002-6289-4420</orcidid><orcidid>https://orcid.org/0000-0002-9549-3746</orcidid></search><sort><creationdate>20230410</creationdate><title>Lagrangian particle tracking velocimetry investigation of vortex shedding topology for oscillating heavy spherical pendulums underwater</title><author>Gold, Thomas ; Reiterer, Kevin ; Worf, Dominik ; Khosronejad, Ali ; Habersack, Helmut ; Sindelar, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-7c2329b02bee68a8da1ee95c23e7981ddb6ac15dde9a7452cda62d159051a93f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Damping</topic><topic>Experiments</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>JFM Papers</topic><topic>Lasers</topic><topic>Mass ratios</topic><topic>Measurement techniques</topic><topic>Momentum</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Pendulums</topic><topic>Propagation velocity</topic><topic>Ratios</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Spheres</topic><topic>Strouhal number</topic><topic>Topology</topic><topic>Vortex rings</topic><topic>Vortex shedding</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gold, Thomas</creatorcontrib><creatorcontrib>Reiterer, Kevin</creatorcontrib><creatorcontrib>Worf, Dominik</creatorcontrib><creatorcontrib>Khosronejad, Ali</creatorcontrib><creatorcontrib>Habersack, Helmut</creatorcontrib><creatorcontrib>Sindelar, Christine</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gold, Thomas</au><au>Reiterer, Kevin</au><au>Worf, Dominik</au><au>Khosronejad, Ali</au><au>Habersack, Helmut</au><au>Sindelar, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lagrangian particle tracking velocimetry investigation of vortex shedding topology for oscillating heavy spherical pendulums underwater</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-04-10</date><risdate>2023</risdate><volume>960</volume><artnum>A14</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The vortex shedding topology of a heavy pendulum oscillating in a dense fluid is investigated using time-resolved three-dimensional particle tracking velocimetry (tr-3-D-PTV). A series of experiments with eight different solid to fluid mass ratios $m^*$ in the range $[1.14, 14.95]$ and corresponding Reynolds numbers of up to $Re \sim O(10^4)$ was conducted. The period of oscillation depends heavily on $m^*$. The relation between amplitude decay and oscillation frequency is non-monotonic, having a damping optimum at $m^* \approx 2.50$. Moreover, a novel digital object tracking (DOT) method using vorticity-magnitude iso-surfaces is implemented to analyse vortical structures. A similar vortex shedding topology is observed for various mass ratios $m^*$. Our observations show that first, a vortex ring in the pendulum's wake is formed. Soon after, the initial ring breaks down to two clearly distinguishable structures of similar size. One of the two vortices remains on the circular path of the pendulum, while the other detaches, propagates downwards, and eventually dissipates. The time when the first vortex is shed, and its initial propagation velocity, depend on $m^*$ and the momentum imparted by the spherical bob. The findings further show good agreement between the experimentally determined vortex shedding frequency and the theoretical vortex shedding time scale based on the Strouhal number.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.170</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6706-0516</orcidid><orcidid>https://orcid.org/0000-0002-6605-3549</orcidid><orcidid>https://orcid.org/0000-0002-6289-4420</orcidid><orcidid>https://orcid.org/0000-0002-9549-3746</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-04, Vol.960, Article A14
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2792793506
source Cambridge University Press Journals Complete
subjects Cameras
Damping
Experiments
Fluid flow
Fluid mechanics
JFM Papers
Lasers
Mass ratios
Measurement techniques
Momentum
Particle tracking
Particle tracking velocimetry
Pendulums
Propagation velocity
Ratios
Reynolds number
Simulation
Spheres
Strouhal number
Topology
Vortex rings
Vortex shedding
Vortices
Vorticity
title Lagrangian particle tracking velocimetry investigation of vortex shedding topology for oscillating heavy spherical pendulums underwater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lagrangian%20particle%20tracking%20velocimetry%20investigation%20of%20vortex%20shedding%20topology%20for%20oscillating%20heavy%20spherical%20pendulums%20underwater&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gold,%20Thomas&rft.date=2023-04-10&rft.volume=960&rft.artnum=A14&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.170&rft_dat=%3Cproquest_cross%3E2792793506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792793506&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_170&rfr_iscdi=true