ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales

As we enter the exascale computing era, efficiently utilizing power and optimizing the performance of scientific applications under power and energy constraints has become critical and challenging. We propose a low-overhead autotuning framework to autotune performance and energy for various hybrid M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Wu, Xingfu, Balaprakash, Prasanna, Kruse, Michael, Koo, Jaehoon, Videau, Brice, Hovland, Paul, Taylor, Valerie, Geltz, Brad, Jana, Siddhartha, Hall, Mary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wu, Xingfu
Balaprakash, Prasanna
Kruse, Michael
Koo, Jaehoon
Videau, Brice
Hovland, Paul
Taylor, Valerie
Geltz, Brad
Jana, Siddhartha
Hall, Mary
description As we enter the exascale computing era, efficiently utilizing power and optimizing the performance of scientific applications under power and energy constraints has become critical and challenging. We propose a low-overhead autotuning framework to autotune performance and energy for various hybrid MPI/OpenMP scientific applications at large scales and to explore the tradeoffs between application runtime and power/energy for energy efficient application execution, then use this framework to autotune four ECP proxy applications -- XSBench, AMG, SWFFT, and SW4lite. Our approach uses Bayesian optimization with a Random Forest surrogate model to effectively search parameter spaces with up to 6 million different configurations on two large-scale production systems, Theta at Argonne National Laboratory and Summit at Oak Ridge National Laboratory. The experimental results show that our autotuning framework at large scales has low overhead and achieves good scalability. Using the proposed autotuning framework to identify the best configurations, we achieve up to 91.59% performance improvement, up to 21.2% energy savings, and up to 37.84% EDP improvement on up to 4,096 nodes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2792709336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792709336</sourcerecordid><originalsourceid>FETCH-proquest_journals_27927093363</originalsourceid><addsrcrecordid>eNqNi7EKwjAUAIMgWLT_8MC5EBPbWjeRioPgoHsJISkpJYnJy9C_N4Mf4HTD3a1IwTg_VKcjYxtSxjhRSlnTsrrmBXku6Dye4ZLQYbLGjvCSRlk02ki4eD8bKdA4G0G7AL1VYVyg19nmSi4gEB4ijCpvYlZxR9ZazFGVP27J_ta_r_fKB_dJKuIwuRRsVgNrO9bSjvOG_1d9ATODPqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792709336</pqid></control><display><type>article</type><title>ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales</title><source>Free E- Journals</source><creator>Wu, Xingfu ; Balaprakash, Prasanna ; Kruse, Michael ; Koo, Jaehoon ; Videau, Brice ; Hovland, Paul ; Taylor, Valerie ; Geltz, Brad ; Jana, Siddhartha ; Hall, Mary</creator><creatorcontrib>Wu, Xingfu ; Balaprakash, Prasanna ; Kruse, Michael ; Koo, Jaehoon ; Videau, Brice ; Hovland, Paul ; Taylor, Valerie ; Geltz, Brad ; Jana, Siddhartha ; Hall, Mary</creatorcontrib><description>As we enter the exascale computing era, efficiently utilizing power and optimizing the performance of scientific applications under power and energy constraints has become critical and challenging. We propose a low-overhead autotuning framework to autotune performance and energy for various hybrid MPI/OpenMP scientific applications at large scales and to explore the tradeoffs between application runtime and power/energy for energy efficient application execution, then use this framework to autotune four ECP proxy applications -- XSBench, AMG, SWFFT, and SW4lite. Our approach uses Bayesian optimization with a Random Forest surrogate model to effectively search parameter spaces with up to 6 million different configurations on two large-scale production systems, Theta at Argonne National Laboratory and Summit at Oak Ridge National Laboratory. The experimental results show that our autotuning framework at large scales has low overhead and achieves good scalability. Using the proposed autotuning framework to identify the best configurations, we achieve up to 91.59% performance improvement, up to 21.2% energy savings, and up to 37.84% EDP improvement on up to 4,096 nodes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alliances ; Configurations ; Energy ; Laboratories ; Optimization ; Research facilities</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wu, Xingfu</creatorcontrib><creatorcontrib>Balaprakash, Prasanna</creatorcontrib><creatorcontrib>Kruse, Michael</creatorcontrib><creatorcontrib>Koo, Jaehoon</creatorcontrib><creatorcontrib>Videau, Brice</creatorcontrib><creatorcontrib>Hovland, Paul</creatorcontrib><creatorcontrib>Taylor, Valerie</creatorcontrib><creatorcontrib>Geltz, Brad</creatorcontrib><creatorcontrib>Jana, Siddhartha</creatorcontrib><creatorcontrib>Hall, Mary</creatorcontrib><title>ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales</title><title>arXiv.org</title><description>As we enter the exascale computing era, efficiently utilizing power and optimizing the performance of scientific applications under power and energy constraints has become critical and challenging. We propose a low-overhead autotuning framework to autotune performance and energy for various hybrid MPI/OpenMP scientific applications at large scales and to explore the tradeoffs between application runtime and power/energy for energy efficient application execution, then use this framework to autotune four ECP proxy applications -- XSBench, AMG, SWFFT, and SW4lite. Our approach uses Bayesian optimization with a Random Forest surrogate model to effectively search parameter spaces with up to 6 million different configurations on two large-scale production systems, Theta at Argonne National Laboratory and Summit at Oak Ridge National Laboratory. The experimental results show that our autotuning framework at large scales has low overhead and achieves good scalability. Using the proposed autotuning framework to identify the best configurations, we achieve up to 91.59% performance improvement, up to 21.2% energy savings, and up to 37.84% EDP improvement on up to 4,096 nodes.</description><subject>Alliances</subject><subject>Configurations</subject><subject>Energy</subject><subject>Laboratories</subject><subject>Optimization</subject><subject>Research facilities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwjAUAIMgWLT_8MC5EBPbWjeRioPgoHsJISkpJYnJy9C_N4Mf4HTD3a1IwTg_VKcjYxtSxjhRSlnTsrrmBXku6Dye4ZLQYbLGjvCSRlk02ki4eD8bKdA4G0G7AL1VYVyg19nmSi4gEB4ijCpvYlZxR9ZazFGVP27J_ta_r_fKB_dJKuIwuRRsVgNrO9bSjvOG_1d9ATODPqU</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Wu, Xingfu</creator><creator>Balaprakash, Prasanna</creator><creator>Kruse, Michael</creator><creator>Koo, Jaehoon</creator><creator>Videau, Brice</creator><creator>Hovland, Paul</creator><creator>Taylor, Valerie</creator><creator>Geltz, Brad</creator><creator>Jana, Siddhartha</creator><creator>Hall, Mary</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230328</creationdate><title>ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales</title><author>Wu, Xingfu ; Balaprakash, Prasanna ; Kruse, Michael ; Koo, Jaehoon ; Videau, Brice ; Hovland, Paul ; Taylor, Valerie ; Geltz, Brad ; Jana, Siddhartha ; Hall, Mary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27927093363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alliances</topic><topic>Configurations</topic><topic>Energy</topic><topic>Laboratories</topic><topic>Optimization</topic><topic>Research facilities</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xingfu</creatorcontrib><creatorcontrib>Balaprakash, Prasanna</creatorcontrib><creatorcontrib>Kruse, Michael</creatorcontrib><creatorcontrib>Koo, Jaehoon</creatorcontrib><creatorcontrib>Videau, Brice</creatorcontrib><creatorcontrib>Hovland, Paul</creatorcontrib><creatorcontrib>Taylor, Valerie</creatorcontrib><creatorcontrib>Geltz, Brad</creatorcontrib><creatorcontrib>Jana, Siddhartha</creatorcontrib><creatorcontrib>Hall, Mary</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xingfu</au><au>Balaprakash, Prasanna</au><au>Kruse, Michael</au><au>Koo, Jaehoon</au><au>Videau, Brice</au><au>Hovland, Paul</au><au>Taylor, Valerie</au><au>Geltz, Brad</au><au>Jana, Siddhartha</au><au>Hall, Mary</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales</atitle><jtitle>arXiv.org</jtitle><date>2023-03-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>As we enter the exascale computing era, efficiently utilizing power and optimizing the performance of scientific applications under power and energy constraints has become critical and challenging. We propose a low-overhead autotuning framework to autotune performance and energy for various hybrid MPI/OpenMP scientific applications at large scales and to explore the tradeoffs between application runtime and power/energy for energy efficient application execution, then use this framework to autotune four ECP proxy applications -- XSBench, AMG, SWFFT, and SW4lite. Our approach uses Bayesian optimization with a Random Forest surrogate model to effectively search parameter spaces with up to 6 million different configurations on two large-scale production systems, Theta at Argonne National Laboratory and Summit at Oak Ridge National Laboratory. The experimental results show that our autotuning framework at large scales has low overhead and achieves good scalability. Using the proposed autotuning framework to identify the best configurations, we achieve up to 91.59% performance improvement, up to 21.2% energy savings, and up to 37.84% EDP improvement on up to 4,096 nodes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2792709336
source Free E- Journals
subjects Alliances
Configurations
Energy
Laboratories
Optimization
Research facilities
title ytopt: Autotuning Scientific Applications for Energy Efficiency at Large Scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=ytopt:%20Autotuning%20Scientific%20Applications%20for%20Energy%20Efficiency%20at%20Large%20Scales&rft.jtitle=arXiv.org&rft.au=Wu,%20Xingfu&rft.date=2023-03-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2792709336%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792709336&rft_id=info:pmid/&rfr_iscdi=true