Modified watershed approach for segmentation of complex optical coherence tomographic images
Watershed segmentation method has been used in various applications. But many a times, due to its over-segmentation attributes, it underperforms in several tasks where noise is a dominant source. In this study, Optical Coherence Tomography images have been acquired, and segmentation has been perform...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Viqar, Maryam Madjarova, Violeta Stoykova, Elena |
description | Watershed segmentation method has been used in various applications. But many a times, due to its over-segmentation attributes, it underperforms in several tasks where noise is a dominant source. In this study, Optical Coherence Tomography images have been acquired, and segmentation has been performed to analyse the different regions of fluid filled sacs in a lemon. A modified watershed algorithm has been proposed which gives promising results for segmentation of internal lemon structures. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2792706895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792706895</sourcerecordid><originalsourceid>FETCH-proquest_journals_27927068953</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHBdiIl9rUVx486lICG9aVPa3Jik6OebhR_gauYwh1mRjAtxKJoj5xuShzAyxnhV87IUGXncsDPaQEffMoIPQ2rSOY9SDVSjpwH6GWyU0aClqKnC2U3woeiiUXJKPIAHq4BGnLH30g1GUTPLHsKOrLWcAuS_3JL95Xw_XYv0_1ogxOeIi7dpevK65TWrmrYU_1lfUrlEkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792706895</pqid></control><display><type>article</type><title>Modified watershed approach for segmentation of complex optical coherence tomographic images</title><source>Free E- Journals</source><creator>Viqar, Maryam ; Madjarova, Violeta ; Stoykova, Elena</creator><creatorcontrib>Viqar, Maryam ; Madjarova, Violeta ; Stoykova, Elena</creatorcontrib><description>Watershed segmentation method has been used in various applications. But many a times, due to its over-segmentation attributes, it underperforms in several tasks where noise is a dominant source. In this study, Optical Coherence Tomography images have been acquired, and segmentation has been performed to analyse the different regions of fluid filled sacs in a lemon. A modified watershed algorithm has been proposed which gives promising results for segmentation of internal lemon structures.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Image acquisition ; Image segmentation ; Optical Coherence Tomography</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Viqar, Maryam</creatorcontrib><creatorcontrib>Madjarova, Violeta</creatorcontrib><creatorcontrib>Stoykova, Elena</creatorcontrib><title>Modified watershed approach for segmentation of complex optical coherence tomographic images</title><title>arXiv.org</title><description>Watershed segmentation method has been used in various applications. But many a times, due to its over-segmentation attributes, it underperforms in several tasks where noise is a dominant source. In this study, Optical Coherence Tomography images have been acquired, and segmentation has been performed to analyse the different regions of fluid filled sacs in a lemon. A modified watershed algorithm has been proposed which gives promising results for segmentation of internal lemon structures.</description><subject>Algorithms</subject><subject>Image acquisition</subject><subject>Image segmentation</subject><subject>Optical Coherence Tomography</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHBdiIl9rUVx486lICG9aVPa3Jik6OebhR_gauYwh1mRjAtxKJoj5xuShzAyxnhV87IUGXncsDPaQEffMoIPQ2rSOY9SDVSjpwH6GWyU0aClqKnC2U3woeiiUXJKPIAHq4BGnLH30g1GUTPLHsKOrLWcAuS_3JL95Xw_XYv0_1ogxOeIi7dpevK65TWrmrYU_1lfUrlEkg</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>Viqar, Maryam</creator><creator>Madjarova, Violeta</creator><creator>Stoykova, Elena</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230329</creationdate><title>Modified watershed approach for segmentation of complex optical coherence tomographic images</title><author>Viqar, Maryam ; Madjarova, Violeta ; Stoykova, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27927068953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Image acquisition</topic><topic>Image segmentation</topic><topic>Optical Coherence Tomography</topic><toplevel>online_resources</toplevel><creatorcontrib>Viqar, Maryam</creatorcontrib><creatorcontrib>Madjarova, Violeta</creatorcontrib><creatorcontrib>Stoykova, Elena</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viqar, Maryam</au><au>Madjarova, Violeta</au><au>Stoykova, Elena</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modified watershed approach for segmentation of complex optical coherence tomographic images</atitle><jtitle>arXiv.org</jtitle><date>2023-03-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Watershed segmentation method has been used in various applications. But many a times, due to its over-segmentation attributes, it underperforms in several tasks where noise is a dominant source. In this study, Optical Coherence Tomography images have been acquired, and segmentation has been performed to analyse the different regions of fluid filled sacs in a lemon. A modified watershed algorithm has been proposed which gives promising results for segmentation of internal lemon structures.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2792706895 |
source | Free E- Journals |
subjects | Algorithms Image acquisition Image segmentation Optical Coherence Tomography |
title | Modified watershed approach for segmentation of complex optical coherence tomographic images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modified%20watershed%20approach%20for%20segmentation%20of%20complex%20optical%20coherence%20tomographic%20images&rft.jtitle=arXiv.org&rft.au=Viqar,%20Maryam&rft.date=2023-03-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2792706895%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792706895&rft_id=info:pmid/&rfr_iscdi=true |