Finite Element Systems for Vector Bundles: Elasticity and Curvature

We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2023-04, Vol.23 (2), p.545-596
Hauptverfasser: Christiansen, Snorre H., Hu, Kaibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 2
container_start_page 545
container_title Foundations of computational mathematics
container_volume 23
creator Christiansen, Snorre H.
Hu, Kaibo
description We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes.
doi_str_mv 10.1007/s10208-022-09555-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2792548755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743619749</galeid><sourcerecordid>A743619749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-1d3c75730bde030b14053c17888eed291c953da434787a05fbf33b582b9d48653</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOD_-gFcFr7zozEezpN7NsakgCH7dhiw9HRltOpNUtn9vtKIOhgRywuF5TuC8SXKG0RAjxC89RgSJDBGSoYIxlq33kgEeYZZRKuj-z5uzw-TI-yVCmBU4HySTmbEmQDqtoQEb0qeND9D4tGpd-go6xHLd2bIGfxUZ5YPRJmxSZct00rl3FToHJ8lBpWoPp9_1OHmZTZ8nt9n9w83dZHyfaYZIyHBJNWeconkJKN44R4xqzIUQACUpsC4YLVVOcy64QqyaV5TOmSDzoszFiNHj5Lyfu3LtWwc-yGXbORu_lIQXhOWCsz_UQtUgja3a4JRujNdyzHM6wgXPi0hlO6gFWHCqbi1UJra3-OEOPp4SGqN3ChdbQmQCrMNCdd7Lu6fHbZb0rHat9w4quXKmUW4jMZKf-co-XxnzlV_5ynWUaC_5CNsFuN9t_GN9AJcMpIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792548755</pqid></control><display><type>article</type><title>Finite Element Systems for Vector Bundles: Elasticity and Curvature</title><source>SpringerLink Journals - AutoHoldings</source><creator>Christiansen, Snorre H. ; Hu, Kaibo</creator><creatorcontrib>Christiansen, Snorre H. ; Hu, Kaibo</creatorcontrib><description>We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-022-09555-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Curvature ; Economics ; Elasticity ; Finite element method ; Homology ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Methods ; Numerical Analysis ; Tensors</subject><ispartof>Foundations of computational mathematics, 2023-04, Vol.23 (2), p.545-596</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-1d3c75730bde030b14053c17888eed291c953da434787a05fbf33b582b9d48653</citedby><cites>FETCH-LOGICAL-c502t-1d3c75730bde030b14053c17888eed291c953da434787a05fbf33b582b9d48653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-022-09555-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-022-09555-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Christiansen, Snorre H.</creatorcontrib><creatorcontrib>Hu, Kaibo</creatorcontrib><title>Finite Element Systems for Vector Bundles: Elasticity and Curvature</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes.</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Curvature</subject><subject>Economics</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Homology</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Methods</subject><subject>Numerical Analysis</subject><subject>Tensors</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kV1LwzAUhosoOD_-gFcFr7zozEezpN7NsakgCH7dhiw9HRltOpNUtn9vtKIOhgRywuF5TuC8SXKG0RAjxC89RgSJDBGSoYIxlq33kgEeYZZRKuj-z5uzw-TI-yVCmBU4HySTmbEmQDqtoQEb0qeND9D4tGpd-go6xHLd2bIGfxUZ5YPRJmxSZct00rl3FToHJ8lBpWoPp9_1OHmZTZ8nt9n9w83dZHyfaYZIyHBJNWeconkJKN44R4xqzIUQACUpsC4YLVVOcy64QqyaV5TOmSDzoszFiNHj5Lyfu3LtWwc-yGXbORu_lIQXhOWCsz_UQtUgja3a4JRujNdyzHM6wgXPi0hlO6gFWHCqbi1UJra3-OEOPp4SGqN3ChdbQmQCrMNCdd7Lu6fHbZb0rHat9w4quXKmUW4jMZKf-co-XxnzlV_5ynWUaC_5CNsFuN9t_GN9AJcMpIU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Christiansen, Snorre H.</creator><creator>Hu, Kaibo</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230401</creationdate><title>Finite Element Systems for Vector Bundles: Elasticity and Curvature</title><author>Christiansen, Snorre H. ; Hu, Kaibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-1d3c75730bde030b14053c17888eed291c953da434787a05fbf33b582b9d48653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Curvature</topic><topic>Economics</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Homology</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Methods</topic><topic>Numerical Analysis</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christiansen, Snorre H.</creatorcontrib><creatorcontrib>Hu, Kaibo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christiansen, Snorre H.</au><au>Hu, Kaibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Systems for Vector Bundles: Elasticity and Curvature</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>23</volume><issue>2</issue><spage>545</spage><epage>596</epage><pages>545-596</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-022-09555-x</doi><tpages>52</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-3375
ispartof Foundations of computational mathematics, 2023-04, Vol.23 (2), p.545-596
issn 1615-3375
1615-3383
language eng
recordid cdi_proquest_journals_2792548755
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Computer Science
Curvature
Economics
Elasticity
Finite element method
Homology
Linear and Multilinear Algebras
Math Applications in Computer Science
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix Theory
Methods
Numerical Analysis
Tensors
title Finite Element Systems for Vector Bundles: Elasticity and Curvature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Systems%20for%20Vector%20Bundles:%20Elasticity%20and%20Curvature&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Christiansen,%20Snorre%20H.&rft.date=2023-04-01&rft.volume=23&rft.issue=2&rft.spage=545&rft.epage=596&rft.pages=545-596&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-022-09555-x&rft_dat=%3Cgale_proqu%3EA743619749%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792548755&rft_id=info:pmid/&rft_galeid=A743619749&rfr_iscdi=true