Finite Element Systems for Vector Bundles: Elasticity and Curvature
We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. W...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2023-04, Vol.23 (2), p.545-596 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 2 |
container_start_page | 545 |
container_title | Foundations of computational mathematics |
container_volume | 23 |
creator | Christiansen, Snorre H. Hu, Kaibo |
description | We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes. |
doi_str_mv | 10.1007/s10208-022-09555-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2792548755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743619749</galeid><sourcerecordid>A743619749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-1d3c75730bde030b14053c17888eed291c953da434787a05fbf33b582b9d48653</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhosoOD_-gFcFr7zozEezpN7NsakgCH7dhiw9HRltOpNUtn9vtKIOhgRywuF5TuC8SXKG0RAjxC89RgSJDBGSoYIxlq33kgEeYZZRKuj-z5uzw-TI-yVCmBU4HySTmbEmQDqtoQEb0qeND9D4tGpd-go6xHLd2bIGfxUZ5YPRJmxSZct00rl3FToHJ8lBpWoPp9_1OHmZTZ8nt9n9w83dZHyfaYZIyHBJNWeconkJKN44R4xqzIUQACUpsC4YLVVOcy64QqyaV5TOmSDzoszFiNHj5Lyfu3LtWwc-yGXbORu_lIQXhOWCsz_UQtUgja3a4JRujNdyzHM6wgXPi0hlO6gFWHCqbi1UJra3-OEOPp4SGqN3ChdbQmQCrMNCdd7Lu6fHbZb0rHat9w4quXKmUW4jMZKf-co-XxnzlV_5ynWUaC_5CNsFuN9t_GN9AJcMpIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792548755</pqid></control><display><type>article</type><title>Finite Element Systems for Vector Bundles: Elasticity and Curvature</title><source>SpringerLink Journals - AutoHoldings</source><creator>Christiansen, Snorre H. ; Hu, Kaibo</creator><creatorcontrib>Christiansen, Snorre H. ; Hu, Kaibo</creatorcontrib><description>We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-022-09555-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Computer Science ; Curvature ; Economics ; Elasticity ; Finite element method ; Homology ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Methods ; Numerical Analysis ; Tensors</subject><ispartof>Foundations of computational mathematics, 2023-04, Vol.23 (2), p.545-596</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-1d3c75730bde030b14053c17888eed291c953da434787a05fbf33b582b9d48653</citedby><cites>FETCH-LOGICAL-c502t-1d3c75730bde030b14053c17888eed291c953da434787a05fbf33b582b9d48653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-022-09555-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-022-09555-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Christiansen, Snorre H.</creatorcontrib><creatorcontrib>Hu, Kaibo</creatorcontrib><title>Finite Element Systems for Vector Bundles: Elasticity and Curvature</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes.</description><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Curvature</subject><subject>Economics</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Homology</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Methods</subject><subject>Numerical Analysis</subject><subject>Tensors</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kV1LwzAUhosoOD_-gFcFr7zozEezpN7NsakgCH7dhiw9HRltOpNUtn9vtKIOhgRywuF5TuC8SXKG0RAjxC89RgSJDBGSoYIxlq33kgEeYZZRKuj-z5uzw-TI-yVCmBU4HySTmbEmQDqtoQEb0qeND9D4tGpd-go6xHLd2bIGfxUZ5YPRJmxSZct00rl3FToHJ8lBpWoPp9_1OHmZTZ8nt9n9w83dZHyfaYZIyHBJNWeconkJKN44R4xqzIUQACUpsC4YLVVOcy64QqyaV5TOmSDzoszFiNHj5Lyfu3LtWwc-yGXbORu_lIQXhOWCsz_UQtUgja3a4JRujNdyzHM6wgXPi0hlO6gFWHCqbi1UJra3-OEOPp4SGqN3ChdbQmQCrMNCdd7Lu6fHbZb0rHat9w4quXKmUW4jMZKf-co-XxnzlV_5ynWUaC_5CNsFuN9t_GN9AJcMpIU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Christiansen, Snorre H.</creator><creator>Hu, Kaibo</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230401</creationdate><title>Finite Element Systems for Vector Bundles: Elasticity and Curvature</title><author>Christiansen, Snorre H. ; Hu, Kaibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-1d3c75730bde030b14053c17888eed291c953da434787a05fbf33b582b9d48653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Curvature</topic><topic>Economics</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Homology</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Methods</topic><topic>Numerical Analysis</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christiansen, Snorre H.</creatorcontrib><creatorcontrib>Hu, Kaibo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christiansen, Snorre H.</au><au>Hu, Kaibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Element Systems for Vector Bundles: Elasticity and Curvature</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>23</volume><issue>2</issue><spage>545</spage><epage>596</epage><pages>545-596</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>We develop a theory of finite element systems, for the purpose of discretizing sections of vector bundles, in particular those arising in the theory of elasticity. In the presence of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham theorem on cohomology groups. We check that some known mixed finite elements for the stress–displacement formulation of elasticity fit our framework. We also define, in dimension two, the first conforming finite element spaces of metrics with good linearized curvature, corresponding to strain tensors with Saint-Venant compatibility conditions. Cochains with coefficients in rigid motions are given a key role in relating continuous and discrete elasticity complexes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-022-09555-x</doi><tpages>52</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2023-04, Vol.23 (2), p.545-596 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_proquest_journals_2792548755 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Computer Science Curvature Economics Elasticity Finite element method Homology Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematics Mathematics and Statistics Matrix Theory Methods Numerical Analysis Tensors |
title | Finite Element Systems for Vector Bundles: Elasticity and Curvature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Element%20Systems%20for%20Vector%20Bundles:%20Elasticity%20and%20Curvature&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Christiansen,%20Snorre%20H.&rft.date=2023-04-01&rft.volume=23&rft.issue=2&rft.spage=545&rft.epage=596&rft.pages=545-596&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-022-09555-x&rft_dat=%3Cgale_proqu%3EA743619749%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792548755&rft_id=info:pmid/&rft_galeid=A743619749&rfr_iscdi=true |