Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance

The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-03, Vol.11 (13), p.4466-4473
Hauptverfasser: Lee, HanKyul, Hyunwoo Jo, Lee, Jong Ik, Koirala, Agni Raj, Cho, Hwichan, Huh, Wansoo, Moon Sung Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4473
container_issue 13
container_start_page 4466
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 11
creator Lee, HanKyul
Hyunwoo Jo
Lee, Jong Ik
Koirala, Agni Raj
Cho, Hwichan
Huh, Wansoo
Moon Sung Kang
description The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS NCs, particularly in thin-film assemblies, provides a versatile strategy for tuning the electronic properties of materials that can be directly applied in electronic devices. Herein, we report that the atomic composition of the Cu2−xS NC assemblies (x = 0.9; cation/anion ratio = 1.1/1) can be controlled by introducing monovalent lithium ions into the assemblies (yielding Li0.7Cu2−xS NCs; x = 0.9; cation/anion ratio = 1.8/1) and reversibly extracting these cations from the assemblies through electrochemical methods. The electrochemically controlled uptake and release of lithium ions in Cu2−xS NC assemblies enabled the systematic tuning of the characteristic near-infrared absorbance (NIR) of the thin-film assemblies based on the localized surface plasmon resonance; NIR absorbance at 1300 nm wavelength, for example, could be controlled by more than 75% by exploiting the reversible doping process.
doi_str_mv 10.1039/d3tc00076a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2792404525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792404525</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-511f74bab6091f341d8b6845c1746f4d4599c5b0a3941cfa7b67d5d3fcdbb85d3</originalsourceid><addsrcrecordid>eNo9jctKAzEARYMoWGo3fkHA9WgyeU2WUqoWCi7UdcnTSZ0mNcmA_oFrP9EvcURxdc_icC4A5xhdYkTklSXVIIQEV0dg1iKGGsEIPf7nlp-CRSm7yUEd5h2XM_CyGpypOZne7YNRAxxC7cO4hzYdQnyGycPl2H59fL49wKhiMvm91ElTpbi9HoIr0KcM6xh_7Nq7kGF0KsMQfVbZWah0SVmraNwZOPFqKG7xt3PwdLN6XN41m_vb9fJ60xxwR2rDMPaCaqU5ktgTim2neUeZwYJyTy1lUhqmkSKSYuOV0FxYZok3Vutugjm4-O0ecnodXanbXRpznC63rZAtRZS1jHwDXK5c6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792404525</pqid></control><display><type>article</type><title>Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lee, HanKyul ; Hyunwoo Jo ; Lee, Jong Ik ; Koirala, Agni Raj ; Cho, Hwichan ; Huh, Wansoo ; Moon Sung Kang</creator><creatorcontrib>Lee, HanKyul ; Hyunwoo Jo ; Lee, Jong Ik ; Koirala, Agni Raj ; Cho, Hwichan ; Huh, Wansoo ; Moon Sung Kang</creatorcontrib><description>The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS NCs, particularly in thin-film assemblies, provides a versatile strategy for tuning the electronic properties of materials that can be directly applied in electronic devices. Herein, we report that the atomic composition of the Cu2−xS NC assemblies (x = 0.9; cation/anion ratio = 1.1/1) can be controlled by introducing monovalent lithium ions into the assemblies (yielding Li0.7Cu2−xS NCs; x = 0.9; cation/anion ratio = 1.8/1) and reversibly extracting these cations from the assemblies through electrochemical methods. The electrochemically controlled uptake and release of lithium ions in Cu2−xS NC assemblies enabled the systematic tuning of the characteristic near-infrared absorbance (NIR) of the thin-film assemblies based on the localized surface plasmon resonance; NIR absorbance at 1300 nm wavelength, for example, could be controlled by more than 75% by exploiting the reversible doping process.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc00076a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorbance ; Anions ; Assemblies ; Bonding ; Carrier density ; Cations ; Composition ; Copper sulfides ; Current carriers ; Doping ; Electronic devices ; Lithium ; Lithium ions ; Material properties ; Nanocrystals ; Near infrared radiation ; Sulfur ; Surface plasmon resonance ; Thin films ; Tuning</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-03, Vol.11 (13), p.4466-4473</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, HanKyul</creatorcontrib><creatorcontrib>Hyunwoo Jo</creatorcontrib><creatorcontrib>Lee, Jong Ik</creatorcontrib><creatorcontrib>Koirala, Agni Raj</creatorcontrib><creatorcontrib>Cho, Hwichan</creatorcontrib><creatorcontrib>Huh, Wansoo</creatorcontrib><creatorcontrib>Moon Sung Kang</creatorcontrib><title>Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS NCs, particularly in thin-film assemblies, provides a versatile strategy for tuning the electronic properties of materials that can be directly applied in electronic devices. Herein, we report that the atomic composition of the Cu2−xS NC assemblies (x = 0.9; cation/anion ratio = 1.1/1) can be controlled by introducing monovalent lithium ions into the assemblies (yielding Li0.7Cu2−xS NCs; x = 0.9; cation/anion ratio = 1.8/1) and reversibly extracting these cations from the assemblies through electrochemical methods. The electrochemically controlled uptake and release of lithium ions in Cu2−xS NC assemblies enabled the systematic tuning of the characteristic near-infrared absorbance (NIR) of the thin-film assemblies based on the localized surface plasmon resonance; NIR absorbance at 1300 nm wavelength, for example, could be controlled by more than 75% by exploiting the reversible doping process.</description><subject>Absorbance</subject><subject>Anions</subject><subject>Assemblies</subject><subject>Bonding</subject><subject>Carrier density</subject><subject>Cations</subject><subject>Composition</subject><subject>Copper sulfides</subject><subject>Current carriers</subject><subject>Doping</subject><subject>Electronic devices</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Material properties</subject><subject>Nanocrystals</subject><subject>Near infrared radiation</subject><subject>Sulfur</subject><subject>Surface plasmon resonance</subject><subject>Thin films</subject><subject>Tuning</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jctKAzEARYMoWGo3fkHA9WgyeU2WUqoWCi7UdcnTSZ0mNcmA_oFrP9EvcURxdc_icC4A5xhdYkTklSXVIIQEV0dg1iKGGsEIPf7nlp-CRSm7yUEd5h2XM_CyGpypOZne7YNRAxxC7cO4hzYdQnyGycPl2H59fL49wKhiMvm91ElTpbi9HoIr0KcM6xh_7Nq7kGF0KsMQfVbZWah0SVmraNwZOPFqKG7xt3PwdLN6XN41m_vb9fJ60xxwR2rDMPaCaqU5ktgTim2neUeZwYJyTy1lUhqmkSKSYuOV0FxYZok3Vutugjm4-O0ecnodXanbXRpznC63rZAtRZS1jHwDXK5c6Q</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>Lee, HanKyul</creator><creator>Hyunwoo Jo</creator><creator>Lee, Jong Ik</creator><creator>Koirala, Agni Raj</creator><creator>Cho, Hwichan</creator><creator>Huh, Wansoo</creator><creator>Moon Sung Kang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20230330</creationdate><title>Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance</title><author>Lee, HanKyul ; Hyunwoo Jo ; Lee, Jong Ik ; Koirala, Agni Raj ; Cho, Hwichan ; Huh, Wansoo ; Moon Sung Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-511f74bab6091f341d8b6845c1746f4d4599c5b0a3941cfa7b67d5d3fcdbb85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbance</topic><topic>Anions</topic><topic>Assemblies</topic><topic>Bonding</topic><topic>Carrier density</topic><topic>Cations</topic><topic>Composition</topic><topic>Copper sulfides</topic><topic>Current carriers</topic><topic>Doping</topic><topic>Electronic devices</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Material properties</topic><topic>Nanocrystals</topic><topic>Near infrared radiation</topic><topic>Sulfur</topic><topic>Surface plasmon resonance</topic><topic>Thin films</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, HanKyul</creatorcontrib><creatorcontrib>Hyunwoo Jo</creatorcontrib><creatorcontrib>Lee, Jong Ik</creatorcontrib><creatorcontrib>Koirala, Agni Raj</creatorcontrib><creatorcontrib>Cho, Hwichan</creatorcontrib><creatorcontrib>Huh, Wansoo</creatorcontrib><creatorcontrib>Moon Sung Kang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, HanKyul</au><au>Hyunwoo Jo</au><au>Lee, Jong Ik</au><au>Koirala, Agni Raj</au><au>Cho, Hwichan</au><au>Huh, Wansoo</au><au>Moon Sung Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-03-30</date><risdate>2023</risdate><volume>11</volume><issue>13</issue><spage>4466</spage><epage>4473</epage><pages>4466-4473</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS NCs, particularly in thin-film assemblies, provides a versatile strategy for tuning the electronic properties of materials that can be directly applied in electronic devices. Herein, we report that the atomic composition of the Cu2−xS NC assemblies (x = 0.9; cation/anion ratio = 1.1/1) can be controlled by introducing monovalent lithium ions into the assemblies (yielding Li0.7Cu2−xS NCs; x = 0.9; cation/anion ratio = 1.8/1) and reversibly extracting these cations from the assemblies through electrochemical methods. The electrochemically controlled uptake and release of lithium ions in Cu2−xS NC assemblies enabled the systematic tuning of the characteristic near-infrared absorbance (NIR) of the thin-film assemblies based on the localized surface plasmon resonance; NIR absorbance at 1300 nm wavelength, for example, could be controlled by more than 75% by exploiting the reversible doping process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tc00076a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-03, Vol.11 (13), p.4466-4473
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2792404525
source Royal Society Of Chemistry Journals 2008-
subjects Absorbance
Anions
Assemblies
Bonding
Carrier density
Cations
Composition
Copper sulfides
Current carriers
Doping
Electronic devices
Lithium
Lithium ions
Material properties
Nanocrystals
Near infrared radiation
Sulfur
Surface plasmon resonance
Thin films
Tuning
title Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20lithium%20doping%20of%20Cu2%E2%88%92xS%20nanocrystal%20assemblies%20for%20tuning%20their%20near%20infrared%20absorbance&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Lee,%20HanKyul&rft.date=2023-03-30&rft.volume=11&rft.issue=13&rft.spage=4466&rft.epage=4473&rft.pages=4466-4473&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc00076a&rft_dat=%3Cproquest%3E2792404525%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792404525&rft_id=info:pmid/&rfr_iscdi=true