Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance
The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS N...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-03, Vol.11 (13), p.4466-4473 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4473 |
---|---|
container_issue | 13 |
container_start_page | 4466 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 11 |
creator | Lee, HanKyul Hyunwoo Jo Lee, Jong Ik Koirala, Agni Raj Cho, Hwichan Huh, Wansoo Moon Sung Kang |
description | The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS NCs, particularly in thin-film assemblies, provides a versatile strategy for tuning the electronic properties of materials that can be directly applied in electronic devices. Herein, we report that the atomic composition of the Cu2−xS NC assemblies (x = 0.9; cation/anion ratio = 1.1/1) can be controlled by introducing monovalent lithium ions into the assemblies (yielding Li0.7Cu2−xS NCs; x = 0.9; cation/anion ratio = 1.8/1) and reversibly extracting these cations from the assemblies through electrochemical methods. The electrochemically controlled uptake and release of lithium ions in Cu2−xS NC assemblies enabled the systematic tuning of the characteristic near-infrared absorbance (NIR) of the thin-film assemblies based on the localized surface plasmon resonance; NIR absorbance at 1300 nm wavelength, for example, could be controlled by more than 75% by exploiting the reversible doping process. |
doi_str_mv | 10.1039/d3tc00076a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2792404525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792404525</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-511f74bab6091f341d8b6845c1746f4d4599c5b0a3941cfa7b67d5d3fcdbb85d3</originalsourceid><addsrcrecordid>eNo9jctKAzEARYMoWGo3fkHA9WgyeU2WUqoWCi7UdcnTSZ0mNcmA_oFrP9EvcURxdc_icC4A5xhdYkTklSXVIIQEV0dg1iKGGsEIPf7nlp-CRSm7yUEd5h2XM_CyGpypOZne7YNRAxxC7cO4hzYdQnyGycPl2H59fL49wKhiMvm91ElTpbi9HoIr0KcM6xh_7Nq7kGF0KsMQfVbZWah0SVmraNwZOPFqKG7xt3PwdLN6XN41m_vb9fJ60xxwR2rDMPaCaqU5ktgTim2neUeZwYJyTy1lUhqmkSKSYuOV0FxYZok3Vutugjm4-O0ecnodXanbXRpznC63rZAtRZS1jHwDXK5c6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792404525</pqid></control><display><type>article</type><title>Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lee, HanKyul ; Hyunwoo Jo ; Lee, Jong Ik ; Koirala, Agni Raj ; Cho, Hwichan ; Huh, Wansoo ; Moon Sung Kang</creator><creatorcontrib>Lee, HanKyul ; Hyunwoo Jo ; Lee, Jong Ik ; Koirala, Agni Raj ; Cho, Hwichan ; Huh, Wansoo ; Moon Sung Kang</creatorcontrib><description>The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS NCs, particularly in thin-film assemblies, provides a versatile strategy for tuning the electronic properties of materials that can be directly applied in electronic devices. Herein, we report that the atomic composition of the Cu2−xS NC assemblies (x = 0.9; cation/anion ratio = 1.1/1) can be controlled by introducing monovalent lithium ions into the assemblies (yielding Li0.7Cu2−xS NCs; x = 0.9; cation/anion ratio = 1.8/1) and reversibly extracting these cations from the assemblies through electrochemical methods. The electrochemically controlled uptake and release of lithium ions in Cu2−xS NC assemblies enabled the systematic tuning of the characteristic near-infrared absorbance (NIR) of the thin-film assemblies based on the localized surface plasmon resonance; NIR absorbance at 1300 nm wavelength, for example, could be controlled by more than 75% by exploiting the reversible doping process.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc00076a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorbance ; Anions ; Assemblies ; Bonding ; Carrier density ; Cations ; Composition ; Copper sulfides ; Current carriers ; Doping ; Electronic devices ; Lithium ; Lithium ions ; Material properties ; Nanocrystals ; Near infrared radiation ; Sulfur ; Surface plasmon resonance ; Thin films ; Tuning</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-03, Vol.11 (13), p.4466-4473</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, HanKyul</creatorcontrib><creatorcontrib>Hyunwoo Jo</creatorcontrib><creatorcontrib>Lee, Jong Ik</creatorcontrib><creatorcontrib>Koirala, Agni Raj</creatorcontrib><creatorcontrib>Cho, Hwichan</creatorcontrib><creatorcontrib>Huh, Wansoo</creatorcontrib><creatorcontrib>Moon Sung Kang</creatorcontrib><title>Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS NCs, particularly in thin-film assemblies, provides a versatile strategy for tuning the electronic properties of materials that can be directly applied in electronic devices. Herein, we report that the atomic composition of the Cu2−xS NC assemblies (x = 0.9; cation/anion ratio = 1.1/1) can be controlled by introducing monovalent lithium ions into the assemblies (yielding Li0.7Cu2−xS NCs; x = 0.9; cation/anion ratio = 1.8/1) and reversibly extracting these cations from the assemblies through electrochemical methods. The electrochemically controlled uptake and release of lithium ions in Cu2−xS NC assemblies enabled the systematic tuning of the characteristic near-infrared absorbance (NIR) of the thin-film assemblies based on the localized surface plasmon resonance; NIR absorbance at 1300 nm wavelength, for example, could be controlled by more than 75% by exploiting the reversible doping process.</description><subject>Absorbance</subject><subject>Anions</subject><subject>Assemblies</subject><subject>Bonding</subject><subject>Carrier density</subject><subject>Cations</subject><subject>Composition</subject><subject>Copper sulfides</subject><subject>Current carriers</subject><subject>Doping</subject><subject>Electronic devices</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Material properties</subject><subject>Nanocrystals</subject><subject>Near infrared radiation</subject><subject>Sulfur</subject><subject>Surface plasmon resonance</subject><subject>Thin films</subject><subject>Tuning</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jctKAzEARYMoWGo3fkHA9WgyeU2WUqoWCi7UdcnTSZ0mNcmA_oFrP9EvcURxdc_icC4A5xhdYkTklSXVIIQEV0dg1iKGGsEIPf7nlp-CRSm7yUEd5h2XM_CyGpypOZne7YNRAxxC7cO4hzYdQnyGycPl2H59fL49wKhiMvm91ElTpbi9HoIr0KcM6xh_7Nq7kGF0KsMQfVbZWah0SVmraNwZOPFqKG7xt3PwdLN6XN41m_vb9fJ60xxwR2rDMPaCaqU5ktgTim2neUeZwYJyTy1lUhqmkSKSYuOV0FxYZok3Vutugjm4-O0ecnodXanbXRpznC63rZAtRZS1jHwDXK5c6Q</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>Lee, HanKyul</creator><creator>Hyunwoo Jo</creator><creator>Lee, Jong Ik</creator><creator>Koirala, Agni Raj</creator><creator>Cho, Hwichan</creator><creator>Huh, Wansoo</creator><creator>Moon Sung Kang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20230330</creationdate><title>Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance</title><author>Lee, HanKyul ; Hyunwoo Jo ; Lee, Jong Ik ; Koirala, Agni Raj ; Cho, Hwichan ; Huh, Wansoo ; Moon Sung Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-511f74bab6091f341d8b6845c1746f4d4599c5b0a3941cfa7b67d5d3fcdbb85d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorbance</topic><topic>Anions</topic><topic>Assemblies</topic><topic>Bonding</topic><topic>Carrier density</topic><topic>Cations</topic><topic>Composition</topic><topic>Copper sulfides</topic><topic>Current carriers</topic><topic>Doping</topic><topic>Electronic devices</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Material properties</topic><topic>Nanocrystals</topic><topic>Near infrared radiation</topic><topic>Sulfur</topic><topic>Surface plasmon resonance</topic><topic>Thin films</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, HanKyul</creatorcontrib><creatorcontrib>Hyunwoo Jo</creatorcontrib><creatorcontrib>Lee, Jong Ik</creatorcontrib><creatorcontrib>Koirala, Agni Raj</creatorcontrib><creatorcontrib>Cho, Hwichan</creatorcontrib><creatorcontrib>Huh, Wansoo</creatorcontrib><creatorcontrib>Moon Sung Kang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, HanKyul</au><au>Hyunwoo Jo</au><au>Lee, Jong Ik</au><au>Koirala, Agni Raj</au><au>Cho, Hwichan</au><au>Huh, Wansoo</au><au>Moon Sung Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-03-30</date><risdate>2023</risdate><volume>11</volume><issue>13</issue><spage>4466</spage><epage>4473</epage><pages>4466-4473</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>The charge carrier density of copper sulfide nanocrystals (Cu2−xS NCs) is sensitive to variations in the atomic composition, which determines the nature of sulfur bonding (sulfur-to-sulfur bonding or copper-to-sulfur bonding) in the lattice. Therefore, the fine control of the composition of Cu2−xS NCs, particularly in thin-film assemblies, provides a versatile strategy for tuning the electronic properties of materials that can be directly applied in electronic devices. Herein, we report that the atomic composition of the Cu2−xS NC assemblies (x = 0.9; cation/anion ratio = 1.1/1) can be controlled by introducing monovalent lithium ions into the assemblies (yielding Li0.7Cu2−xS NCs; x = 0.9; cation/anion ratio = 1.8/1) and reversibly extracting these cations from the assemblies through electrochemical methods. The electrochemically controlled uptake and release of lithium ions in Cu2−xS NC assemblies enabled the systematic tuning of the characteristic near-infrared absorbance (NIR) of the thin-film assemblies based on the localized surface plasmon resonance; NIR absorbance at 1300 nm wavelength, for example, could be controlled by more than 75% by exploiting the reversible doping process.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tc00076a</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-03, Vol.11 (13), p.4466-4473 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2792404525 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Absorbance Anions Assemblies Bonding Carrier density Cations Composition Copper sulfides Current carriers Doping Electronic devices Lithium Lithium ions Material properties Nanocrystals Near infrared radiation Sulfur Surface plasmon resonance Thin films Tuning |
title | Electrochemical lithium doping of Cu2−xS nanocrystal assemblies for tuning their near infrared absorbance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20lithium%20doping%20of%20Cu2%E2%88%92xS%20nanocrystal%20assemblies%20for%20tuning%20their%20near%20infrared%20absorbance&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Lee,%20HanKyul&rft.date=2023-03-30&rft.volume=11&rft.issue=13&rft.spage=4466&rft.epage=4473&rft.pages=4466-4473&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc00076a&rft_dat=%3Cproquest%3E2792404525%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792404525&rft_id=info:pmid/&rfr_iscdi=true |