Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme
Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, im...
Gespeichert in:
Veröffentlicht in: | Annals of data science 2023-04, Vol.10 (2), p.455-479 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 2 |
container_start_page | 455 |
container_title | Annals of data science |
container_volume | 10 |
creator | Yadav, Abhimanyu Singh Sen, Subhradev Maiti, Sudhansu S. Saha, Mahendra Shukla, Shivanshi |
description | Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, important entropy measures) and some additional survival and/or reliability characteristics (such as, conditional moments, mean deviation, Bonferroni and Lorenz curves, entropy, ageing intensity) of inverse xgamma distribution have been studied in detail. Classical and Bayesian inferential procedures to estimate the unknown parameter, reliability function, hazard rate function under progressively censored schemes have been investigated. Further, asymptotic confidence interval (ACI), bootstrap confidence interval (BCI) and highest posterior density (HPD) credible interval for the parameter have also been calculated. A Monte-Carlo simulation study has been performed to compare the performances of classical and Bayesian estimators of reliability function and hazard rate function. The performances of ACI, BCI and HPD credible intervals have been compared in terms of estimated average widths and coverage probabilities for the parameter. Lastly, a data set is analyzed for illustrating the proposed methodology. |
doi_str_mv | 10.1007/s40745-020-00286-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2792204260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792204260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185w-1baf5c11309a81c8d0612869a8812c84b216a686f5e2e9ade3677fff649d31f93</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEElXpH-BkibPBdt5HKBQiVQKp7dlyk3WbithhnfTx7zEEwY3T7kozs5ovCK45u-WMpXcuYmkUUyYYZUxkCT2cBSPB84zGGRfnvzuLLoOJczvmVTxiIoxHwXFhGyCzHrstIHlD2wJ2NTiiTEUe1AlcrQwpjAYEUwLRFv21B3RAjhvVNIo81q7Det13tTVkZaohZ4PgXL0Hsjy1QIuCTME4i1CRRbmFBq6CC63eHUx-5jhYzZ6W0xc6f30upvdzWvIsPlC-VjouOQ9ZrjJeZhVLuK_oD1-tzKK14IlKskTHICBXFYRJmmqtkyivQq7zcBzcDLkt2o8eXCd3tkfjX0qR5kKwSCTMq8SgKtE6h6Bli3Wj8CQ5k1-Q5QBZesjyG7I8eFM4mJwXmw3gX_Q_rk9ImYCP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792204260</pqid></control><display><type>article</type><title>Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme</title><source>SpringerNature Journals</source><creator>Yadav, Abhimanyu Singh ; Sen, Subhradev ; Maiti, Sudhansu S. ; Saha, Mahendra ; Shukla, Shivanshi</creator><creatorcontrib>Yadav, Abhimanyu Singh ; Sen, Subhradev ; Maiti, Sudhansu S. ; Saha, Mahendra ; Shukla, Shivanshi</creatorcontrib><description>Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, important entropy measures) and some additional survival and/or reliability characteristics (such as, conditional moments, mean deviation, Bonferroni and Lorenz curves, entropy, ageing intensity) of inverse xgamma distribution have been studied in detail. Classical and Bayesian inferential procedures to estimate the unknown parameter, reliability function, hazard rate function under progressively censored schemes have been investigated. Further, asymptotic confidence interval (ACI), bootstrap confidence interval (BCI) and highest posterior density (HPD) credible interval for the parameter have also been calculated. A Monte-Carlo simulation study has been performed to compare the performances of classical and Bayesian estimators of reliability function and hazard rate function. The performances of ACI, BCI and HPD credible intervals have been compared in terms of estimated average widths and coverage probabilities for the parameter. Lastly, a data set is analyzed for illustrating the proposed methodology.</description><identifier>ISSN: 2198-5804</identifier><identifier>EISSN: 2198-5812</identifier><identifier>DOI: 10.1007/s40745-020-00286-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Bayesian analysis ; Business and Management ; Confidence intervals ; Economics ; Entropy ; Extreme values ; Finance ; Insurance ; Management ; Mathematical analysis ; Parameters ; Reliability aspects ; Statistical analysis ; Statistical inference ; Statistics for Business</subject><ispartof>Annals of data science, 2023-04, Vol.10 (2), p.455-479</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185w-1baf5c11309a81c8d0612869a8812c84b216a686f5e2e9ade3677fff649d31f93</cites><orcidid>0000-0002-0819-5696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40745-020-00286-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40745-020-00286-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yadav, Abhimanyu Singh</creatorcontrib><creatorcontrib>Sen, Subhradev</creatorcontrib><creatorcontrib>Maiti, Sudhansu S.</creatorcontrib><creatorcontrib>Saha, Mahendra</creatorcontrib><creatorcontrib>Shukla, Shivanshi</creatorcontrib><title>Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme</title><title>Annals of data science</title><addtitle>Ann. Data. Sci</addtitle><description>Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, important entropy measures) and some additional survival and/or reliability characteristics (such as, conditional moments, mean deviation, Bonferroni and Lorenz curves, entropy, ageing intensity) of inverse xgamma distribution have been studied in detail. Classical and Bayesian inferential procedures to estimate the unknown parameter, reliability function, hazard rate function under progressively censored schemes have been investigated. Further, asymptotic confidence interval (ACI), bootstrap confidence interval (BCI) and highest posterior density (HPD) credible interval for the parameter have also been calculated. A Monte-Carlo simulation study has been performed to compare the performances of classical and Bayesian estimators of reliability function and hazard rate function. The performances of ACI, BCI and HPD credible intervals have been compared in terms of estimated average widths and coverage probabilities for the parameter. Lastly, a data set is analyzed for illustrating the proposed methodology.</description><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Business and Management</subject><subject>Confidence intervals</subject><subject>Economics</subject><subject>Entropy</subject><subject>Extreme values</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Reliability aspects</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistics for Business</subject><issn>2198-5804</issn><issn>2198-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPwzAQhCMEElXpH-BkibPBdt5HKBQiVQKp7dlyk3WbithhnfTx7zEEwY3T7kozs5ovCK45u-WMpXcuYmkUUyYYZUxkCT2cBSPB84zGGRfnvzuLLoOJczvmVTxiIoxHwXFhGyCzHrstIHlD2wJ2NTiiTEUe1AlcrQwpjAYEUwLRFv21B3RAjhvVNIo81q7Det13tTVkZaohZ4PgXL0Hsjy1QIuCTME4i1CRRbmFBq6CC63eHUx-5jhYzZ6W0xc6f30upvdzWvIsPlC-VjouOQ9ZrjJeZhVLuK_oD1-tzKK14IlKskTHICBXFYRJmmqtkyivQq7zcBzcDLkt2o8eXCd3tkfjX0qR5kKwSCTMq8SgKtE6h6Bli3Wj8CQ5k1-Q5QBZesjyG7I8eFM4mJwXmw3gX_Q_rk9ImYCP</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Yadav, Abhimanyu Singh</creator><creator>Sen, Subhradev</creator><creator>Maiti, Sudhansu S.</creator><creator>Saha, Mahendra</creator><creator>Shukla, Shivanshi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0819-5696</orcidid></search><sort><creationdate>20230401</creationdate><title>Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme</title><author>Yadav, Abhimanyu Singh ; Sen, Subhradev ; Maiti, Sudhansu S. ; Saha, Mahendra ; Shukla, Shivanshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185w-1baf5c11309a81c8d0612869a8812c84b216a686f5e2e9ade3677fff649d31f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Business and Management</topic><topic>Confidence intervals</topic><topic>Economics</topic><topic>Entropy</topic><topic>Extreme values</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Reliability aspects</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Abhimanyu Singh</creatorcontrib><creatorcontrib>Sen, Subhradev</creatorcontrib><creatorcontrib>Maiti, Sudhansu S.</creatorcontrib><creatorcontrib>Saha, Mahendra</creatorcontrib><creatorcontrib>Shukla, Shivanshi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Abhimanyu Singh</au><au>Sen, Subhradev</au><au>Maiti, Sudhansu S.</au><au>Saha, Mahendra</au><au>Shukla, Shivanshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme</atitle><jtitle>Annals of data science</jtitle><stitle>Ann. Data. Sci</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>10</volume><issue>2</issue><spage>455</spage><epage>479</epage><pages>455-479</pages><issn>2198-5804</issn><eissn>2198-5812</eissn><abstract>Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, important entropy measures) and some additional survival and/or reliability characteristics (such as, conditional moments, mean deviation, Bonferroni and Lorenz curves, entropy, ageing intensity) of inverse xgamma distribution have been studied in detail. Classical and Bayesian inferential procedures to estimate the unknown parameter, reliability function, hazard rate function under progressively censored schemes have been investigated. Further, asymptotic confidence interval (ACI), bootstrap confidence interval (BCI) and highest posterior density (HPD) credible interval for the parameter have also been calculated. A Monte-Carlo simulation study has been performed to compare the performances of classical and Bayesian estimators of reliability function and hazard rate function. The performances of ACI, BCI and HPD credible intervals have been compared in terms of estimated average widths and coverage probabilities for the parameter. Lastly, a data set is analyzed for illustrating the proposed methodology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40745-020-00286-w</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0819-5696</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-5804 |
ispartof | Annals of data science, 2023-04, Vol.10 (2), p.455-479 |
issn | 2198-5804 2198-5812 |
language | eng |
recordid | cdi_proquest_journals_2792204260 |
source | SpringerNature Journals |
subjects | Artificial Intelligence Bayesian analysis Business and Management Confidence intervals Economics Entropy Extreme values Finance Insurance Management Mathematical analysis Parameters Reliability aspects Statistical analysis Statistical inference Statistics for Business |
title | Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Further%20Properties%20and%20Bayesian%20Inference%20for%20Inverse%20xgamma%20Distribution%20Under%20Progressive%20Type-II%20Censored%20Scheme&rft.jtitle=Annals%20of%20data%20science&rft.au=Yadav,%20Abhimanyu%20Singh&rft.date=2023-04-01&rft.volume=10&rft.issue=2&rft.spage=455&rft.epage=479&rft.pages=455-479&rft.issn=2198-5804&rft.eissn=2198-5812&rft_id=info:doi/10.1007/s40745-020-00286-w&rft_dat=%3Cproquest_cross%3E2792204260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792204260&rft_id=info:pmid/&rfr_iscdi=true |