Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme

Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of data science 2023-04, Vol.10 (2), p.455-479
Hauptverfasser: Yadav, Abhimanyu Singh, Sen, Subhradev, Maiti, Sudhansu S., Saha, Mahendra, Shukla, Shivanshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 2
container_start_page 455
container_title Annals of data science
container_volume 10
creator Yadav, Abhimanyu Singh
Sen, Subhradev
Maiti, Sudhansu S.
Saha, Mahendra
Shukla, Shivanshi
description Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, important entropy measures) and some additional survival and/or reliability characteristics (such as, conditional moments, mean deviation, Bonferroni and Lorenz curves, entropy, ageing intensity) of inverse xgamma distribution have been studied in detail. Classical and Bayesian inferential procedures to estimate the unknown parameter, reliability function, hazard rate function under progressively censored schemes have been investigated. Further, asymptotic confidence interval (ACI), bootstrap confidence interval (BCI) and highest posterior density (HPD) credible interval for the parameter have also been calculated. A Monte-Carlo simulation study has been performed to compare the performances of classical and Bayesian estimators of reliability function and hazard rate function. The performances of ACI, BCI and HPD credible intervals have been compared in terms of estimated average widths and coverage probabilities for the parameter. Lastly, a data set is analyzed for illustrating the proposed methodology.
doi_str_mv 10.1007/s40745-020-00286-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2792204260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792204260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185w-1baf5c11309a81c8d0612869a8812c84b216a686f5e2e9ade3677fff649d31f93</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEElXpH-BkibPBdt5HKBQiVQKp7dlyk3WbithhnfTx7zEEwY3T7kozs5ovCK45u-WMpXcuYmkUUyYYZUxkCT2cBSPB84zGGRfnvzuLLoOJczvmVTxiIoxHwXFhGyCzHrstIHlD2wJ2NTiiTEUe1AlcrQwpjAYEUwLRFv21B3RAjhvVNIo81q7Det13tTVkZaohZ4PgXL0Hsjy1QIuCTME4i1CRRbmFBq6CC63eHUx-5jhYzZ6W0xc6f30upvdzWvIsPlC-VjouOQ9ZrjJeZhVLuK_oD1-tzKK14IlKskTHICBXFYRJmmqtkyivQq7zcBzcDLkt2o8eXCd3tkfjX0qR5kKwSCTMq8SgKtE6h6Bli3Wj8CQ5k1-Q5QBZesjyG7I8eFM4mJwXmw3gX_Q_rk9ImYCP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792204260</pqid></control><display><type>article</type><title>Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme</title><source>SpringerNature Journals</source><creator>Yadav, Abhimanyu Singh ; Sen, Subhradev ; Maiti, Sudhansu S. ; Saha, Mahendra ; Shukla, Shivanshi</creator><creatorcontrib>Yadav, Abhimanyu Singh ; Sen, Subhradev ; Maiti, Sudhansu S. ; Saha, Mahendra ; Shukla, Shivanshi</creatorcontrib><description>Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, important entropy measures) and some additional survival and/or reliability characteristics (such as, conditional moments, mean deviation, Bonferroni and Lorenz curves, entropy, ageing intensity) of inverse xgamma distribution have been studied in detail. Classical and Bayesian inferential procedures to estimate the unknown parameter, reliability function, hazard rate function under progressively censored schemes have been investigated. Further, asymptotic confidence interval (ACI), bootstrap confidence interval (BCI) and highest posterior density (HPD) credible interval for the parameter have also been calculated. A Monte-Carlo simulation study has been performed to compare the performances of classical and Bayesian estimators of reliability function and hazard rate function. The performances of ACI, BCI and HPD credible intervals have been compared in terms of estimated average widths and coverage probabilities for the parameter. Lastly, a data set is analyzed for illustrating the proposed methodology.</description><identifier>ISSN: 2198-5804</identifier><identifier>EISSN: 2198-5812</identifier><identifier>DOI: 10.1007/s40745-020-00286-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Bayesian analysis ; Business and Management ; Confidence intervals ; Economics ; Entropy ; Extreme values ; Finance ; Insurance ; Management ; Mathematical analysis ; Parameters ; Reliability aspects ; Statistical analysis ; Statistical inference ; Statistics for Business</subject><ispartof>Annals of data science, 2023-04, Vol.10 (2), p.455-479</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c185w-1baf5c11309a81c8d0612869a8812c84b216a686f5e2e9ade3677fff649d31f93</cites><orcidid>0000-0002-0819-5696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40745-020-00286-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40745-020-00286-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yadav, Abhimanyu Singh</creatorcontrib><creatorcontrib>Sen, Subhradev</creatorcontrib><creatorcontrib>Maiti, Sudhansu S.</creatorcontrib><creatorcontrib>Saha, Mahendra</creatorcontrib><creatorcontrib>Shukla, Shivanshi</creatorcontrib><title>Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme</title><title>Annals of data science</title><addtitle>Ann. Data. Sci</addtitle><description>Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, important entropy measures) and some additional survival and/or reliability characteristics (such as, conditional moments, mean deviation, Bonferroni and Lorenz curves, entropy, ageing intensity) of inverse xgamma distribution have been studied in detail. Classical and Bayesian inferential procedures to estimate the unknown parameter, reliability function, hazard rate function under progressively censored schemes have been investigated. Further, asymptotic confidence interval (ACI), bootstrap confidence interval (BCI) and highest posterior density (HPD) credible interval for the parameter have also been calculated. A Monte-Carlo simulation study has been performed to compare the performances of classical and Bayesian estimators of reliability function and hazard rate function. The performances of ACI, BCI and HPD credible intervals have been compared in terms of estimated average widths and coverage probabilities for the parameter. Lastly, a data set is analyzed for illustrating the proposed methodology.</description><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Business and Management</subject><subject>Confidence intervals</subject><subject>Economics</subject><subject>Entropy</subject><subject>Extreme values</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Reliability aspects</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistics for Business</subject><issn>2198-5804</issn><issn>2198-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPwzAQhCMEElXpH-BkibPBdt5HKBQiVQKp7dlyk3WbithhnfTx7zEEwY3T7kozs5ovCK45u-WMpXcuYmkUUyYYZUxkCT2cBSPB84zGGRfnvzuLLoOJczvmVTxiIoxHwXFhGyCzHrstIHlD2wJ2NTiiTEUe1AlcrQwpjAYEUwLRFv21B3RAjhvVNIo81q7Det13tTVkZaohZ4PgXL0Hsjy1QIuCTME4i1CRRbmFBq6CC63eHUx-5jhYzZ6W0xc6f30upvdzWvIsPlC-VjouOQ9ZrjJeZhVLuK_oD1-tzKK14IlKskTHICBXFYRJmmqtkyivQq7zcBzcDLkt2o8eXCd3tkfjX0qR5kKwSCTMq8SgKtE6h6Bli3Wj8CQ5k1-Q5QBZesjyG7I8eFM4mJwXmw3gX_Q_rk9ImYCP</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Yadav, Abhimanyu Singh</creator><creator>Sen, Subhradev</creator><creator>Maiti, Sudhansu S.</creator><creator>Saha, Mahendra</creator><creator>Shukla, Shivanshi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0819-5696</orcidid></search><sort><creationdate>20230401</creationdate><title>Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme</title><author>Yadav, Abhimanyu Singh ; Sen, Subhradev ; Maiti, Sudhansu S. ; Saha, Mahendra ; Shukla, Shivanshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185w-1baf5c11309a81c8d0612869a8812c84b216a686f5e2e9ade3677fff649d31f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Business and Management</topic><topic>Confidence intervals</topic><topic>Economics</topic><topic>Entropy</topic><topic>Extreme values</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Reliability aspects</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Abhimanyu Singh</creatorcontrib><creatorcontrib>Sen, Subhradev</creatorcontrib><creatorcontrib>Maiti, Sudhansu S.</creatorcontrib><creatorcontrib>Saha, Mahendra</creatorcontrib><creatorcontrib>Shukla, Shivanshi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Abhimanyu Singh</au><au>Sen, Subhradev</au><au>Maiti, Sudhansu S.</au><au>Saha, Mahendra</au><au>Shukla, Shivanshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme</atitle><jtitle>Annals of data science</jtitle><stitle>Ann. Data. Sci</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>10</volume><issue>2</issue><spage>455</spage><epage>479</epage><pages>455-479</pages><issn>2198-5804</issn><eissn>2198-5812</eissn><abstract>Inverse xgamma distribution is recently proposed by Yadav et al. (J Ind Prod Eng 35(1):48–55, 2018) as an inverted version of xgamma distribution. In the present article, some more statistical properties (such as, characteristic and generating functions, distributions of extreme order statistics, important entropy measures) and some additional survival and/or reliability characteristics (such as, conditional moments, mean deviation, Bonferroni and Lorenz curves, entropy, ageing intensity) of inverse xgamma distribution have been studied in detail. Classical and Bayesian inferential procedures to estimate the unknown parameter, reliability function, hazard rate function under progressively censored schemes have been investigated. Further, asymptotic confidence interval (ACI), bootstrap confidence interval (BCI) and highest posterior density (HPD) credible interval for the parameter have also been calculated. A Monte-Carlo simulation study has been performed to compare the performances of classical and Bayesian estimators of reliability function and hazard rate function. The performances of ACI, BCI and HPD credible intervals have been compared in terms of estimated average widths and coverage probabilities for the parameter. Lastly, a data set is analyzed for illustrating the proposed methodology.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40745-020-00286-w</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0819-5696</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2198-5804
ispartof Annals of data science, 2023-04, Vol.10 (2), p.455-479
issn 2198-5804
2198-5812
language eng
recordid cdi_proquest_journals_2792204260
source SpringerNature Journals
subjects Artificial Intelligence
Bayesian analysis
Business and Management
Confidence intervals
Economics
Entropy
Extreme values
Finance
Insurance
Management
Mathematical analysis
Parameters
Reliability aspects
Statistical analysis
Statistical inference
Statistics for Business
title Some Further Properties and Bayesian Inference for Inverse xgamma Distribution Under Progressive Type-II Censored Scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Further%20Properties%20and%20Bayesian%20Inference%20for%20Inverse%20xgamma%20Distribution%20Under%20Progressive%20Type-II%20Censored%20Scheme&rft.jtitle=Annals%20of%20data%20science&rft.au=Yadav,%20Abhimanyu%20Singh&rft.date=2023-04-01&rft.volume=10&rft.issue=2&rft.spage=455&rft.epage=479&rft.pages=455-479&rft.issn=2198-5804&rft.eissn=2198-5812&rft_id=info:doi/10.1007/s40745-020-00286-w&rft_dat=%3Cproquest_cross%3E2792204260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792204260&rft_id=info:pmid/&rfr_iscdi=true