Evaluation of ChatGPT for NLP-based Mental Health Applications

Large language models (LLM) have been successful in several natural language understanding tasks and could be relevant for natural language processing (NLP)-based mental health application research. In this work, we report the performance of LLM-based ChatGPT (with gpt-3.5-turbo backend) in three te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
1. Verfasser: Lamichhane, Bishal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lamichhane, Bishal
description Large language models (LLM) have been successful in several natural language understanding tasks and could be relevant for natural language processing (NLP)-based mental health application research. In this work, we report the performance of LLM-based ChatGPT (with gpt-3.5-turbo backend) in three text-based mental health classification tasks: stress detection (2-class classification), depression detection (2-class classification), and suicidality detection (5-class classification). We obtained annotated social media posts for the three classification tasks from public datasets. Then ChatGPT API classified the social media posts with an input prompt for classification. We obtained F1 scores of 0.73, 0.86, and 0.37 for stress detection, depression detection, and suicidality detection, respectively. A baseline model that always predicted the dominant class resulted in F1 scores of 0.35, 0.60, and 0.19. The zero-shot classification accuracy obtained with ChatGPT indicates a potential use of language models for mental health classification tasks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2792174337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792174337</sourcerecordid><originalsourceid>FETCH-proquest_journals_27921743373</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcy1LzClNLMnMz1PIT1NwzkgscQ8IUUjLL1Lw8wnQTUosTk1R8E3NK0nMUfBITcwpyVBwLCjIyUwGaynmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3NLI0NzE2Njc2PiVAEAMi83UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792174337</pqid></control><display><type>article</type><title>Evaluation of ChatGPT for NLP-based Mental Health Applications</title><source>Free E- Journals</source><creator>Lamichhane, Bishal</creator><creatorcontrib>Lamichhane, Bishal</creatorcontrib><description>Large language models (LLM) have been successful in several natural language understanding tasks and could be relevant for natural language processing (NLP)-based mental health application research. In this work, we report the performance of LLM-based ChatGPT (with gpt-3.5-turbo backend) in three text-based mental health classification tasks: stress detection (2-class classification), depression detection (2-class classification), and suicidality detection (5-class classification). We obtained annotated social media posts for the three classification tasks from public datasets. Then ChatGPT API classified the social media posts with an input prompt for classification. We obtained F1 scores of 0.73, 0.86, and 0.37 for stress detection, depression detection, and suicidality detection, respectively. A baseline model that always predicted the dominant class resulted in F1 scores of 0.35, 0.60, and 0.19. The zero-shot classification accuracy obtained with ChatGPT indicates a potential use of language models for mental health classification tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chatbots ; Classification ; Digital media ; Mental health ; Natural language processing ; Social networks</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lamichhane, Bishal</creatorcontrib><title>Evaluation of ChatGPT for NLP-based Mental Health Applications</title><title>arXiv.org</title><description>Large language models (LLM) have been successful in several natural language understanding tasks and could be relevant for natural language processing (NLP)-based mental health application research. In this work, we report the performance of LLM-based ChatGPT (with gpt-3.5-turbo backend) in three text-based mental health classification tasks: stress detection (2-class classification), depression detection (2-class classification), and suicidality detection (5-class classification). We obtained annotated social media posts for the three classification tasks from public datasets. Then ChatGPT API classified the social media posts with an input prompt for classification. We obtained F1 scores of 0.73, 0.86, and 0.37 for stress detection, depression detection, and suicidality detection, respectively. A baseline model that always predicted the dominant class resulted in F1 scores of 0.35, 0.60, and 0.19. The zero-shot classification accuracy obtained with ChatGPT indicates a potential use of language models for mental health classification tasks.</description><subject>Chatbots</subject><subject>Classification</subject><subject>Digital media</subject><subject>Mental health</subject><subject>Natural language processing</subject><subject>Social networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcy1LzClNLMnMz1PIT1NwzkgscQ8IUUjLL1Lw8wnQTUosTk1R8E3NK0nMUfBITcwpyVBwLCjIyUwGaynmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3NLI0NzE2Njc2PiVAEAMi83UA</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Lamichhane, Bishal</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230328</creationdate><title>Evaluation of ChatGPT for NLP-based Mental Health Applications</title><author>Lamichhane, Bishal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27921743373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chatbots</topic><topic>Classification</topic><topic>Digital media</topic><topic>Mental health</topic><topic>Natural language processing</topic><topic>Social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Lamichhane, Bishal</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamichhane, Bishal</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Evaluation of ChatGPT for NLP-based Mental Health Applications</atitle><jtitle>arXiv.org</jtitle><date>2023-03-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Large language models (LLM) have been successful in several natural language understanding tasks and could be relevant for natural language processing (NLP)-based mental health application research. In this work, we report the performance of LLM-based ChatGPT (with gpt-3.5-turbo backend) in three text-based mental health classification tasks: stress detection (2-class classification), depression detection (2-class classification), and suicidality detection (5-class classification). We obtained annotated social media posts for the three classification tasks from public datasets. Then ChatGPT API classified the social media posts with an input prompt for classification. We obtained F1 scores of 0.73, 0.86, and 0.37 for stress detection, depression detection, and suicidality detection, respectively. A baseline model that always predicted the dominant class resulted in F1 scores of 0.35, 0.60, and 0.19. The zero-shot classification accuracy obtained with ChatGPT indicates a potential use of language models for mental health classification tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2792174337
source Free E- Journals
subjects Chatbots
Classification
Digital media
Mental health
Natural language processing
Social networks
title Evaluation of ChatGPT for NLP-based Mental Health Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Evaluation%20of%20ChatGPT%20for%20NLP-based%20Mental%20Health%20Applications&rft.jtitle=arXiv.org&rft.au=Lamichhane,%20Bishal&rft.date=2023-03-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2792174337%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792174337&rft_id=info:pmid/&rfr_iscdi=true