TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation
Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Meng, Xiangyun Hatch, Nathan Lambert, Alexander Li, Anqi Wagener, Nolan Schmittle, Matthew Lee, JoonHo Yuan, Wentao Chen, Zoey Deng, Samuel Okopal, Greg Fox, Dieter Boots, Byron Shaban, Amirreza |
description | Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2792173496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792173496</sourcerecordid><originalsourceid>FETCH-proquest_journals_27921734963</originalsourceid><addsrcrecordid>eNqNyk8LgjAYgPERBEn5HV7o2kA3_2RXKbxUENJVBm42WXtt0-jj18EP0Ok5PL8FCRjnMd0njK1I6H0fRRHLcpamPCC3WjontL3I8QB37Sdh4IytNNp2gApKfA5GfmBmoNBBpbsH9YOU7Q6uSlGHooWLeOtOjBrthiyVMF6Gc9dkezrWZUUHh69J-rHpcXL2txqWFyzOeVJk_D_1BX81PuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792173496</pqid></control><display><type>article</type><title>TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation</title><source>Free E- Journals</source><creator>Meng, Xiangyun ; Hatch, Nathan ; Lambert, Alexander ; Li, Anqi ; Wagener, Nolan ; Schmittle, Matthew ; Lee, JoonHo ; Yuan, Wentao ; Chen, Zoey ; Deng, Samuel ; Okopal, Greg ; Fox, Dieter ; Boots, Byron ; Shaban, Amirreza</creator><creatorcontrib>Meng, Xiangyun ; Hatch, Nathan ; Lambert, Alexander ; Li, Anqi ; Wagener, Nolan ; Schmittle, Matthew ; Lee, JoonHo ; Yuan, Wentao ; Chen, Zoey ; Deng, Samuel ; Okopal, Greg ; Fox, Dieter ; Boots, Byron ; Shaban, Amirreza</creatorcontrib><description>Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Estimation ; High speed ; Modelling ; Navigation ; System effectiveness ; Terrain models ; Vision systems</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Meng, Xiangyun</creatorcontrib><creatorcontrib>Hatch, Nathan</creatorcontrib><creatorcontrib>Lambert, Alexander</creatorcontrib><creatorcontrib>Li, Anqi</creatorcontrib><creatorcontrib>Wagener, Nolan</creatorcontrib><creatorcontrib>Schmittle, Matthew</creatorcontrib><creatorcontrib>Lee, JoonHo</creatorcontrib><creatorcontrib>Yuan, Wentao</creatorcontrib><creatorcontrib>Chen, Zoey</creatorcontrib><creatorcontrib>Deng, Samuel</creatorcontrib><creatorcontrib>Okopal, Greg</creatorcontrib><creatorcontrib>Fox, Dieter</creatorcontrib><creatorcontrib>Boots, Byron</creatorcontrib><creatorcontrib>Shaban, Amirreza</creatorcontrib><title>TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation</title><title>arXiv.org</title><description>Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario.</description><subject>Cameras</subject><subject>Estimation</subject><subject>High speed</subject><subject>Modelling</subject><subject>Navigation</subject><subject>System effectiveness</subject><subject>Terrain models</subject><subject>Vision systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyk8LgjAYgPERBEn5HV7o2kA3_2RXKbxUENJVBm42WXtt0-jj18EP0Ok5PL8FCRjnMd0njK1I6H0fRRHLcpamPCC3WjontL3I8QB37Sdh4IytNNp2gApKfA5GfmBmoNBBpbsH9YOU7Q6uSlGHooWLeOtOjBrthiyVMF6Gc9dkezrWZUUHh69J-rHpcXL2txqWFyzOeVJk_D_1BX81PuU</recordid><startdate>20230529</startdate><enddate>20230529</enddate><creator>Meng, Xiangyun</creator><creator>Hatch, Nathan</creator><creator>Lambert, Alexander</creator><creator>Li, Anqi</creator><creator>Wagener, Nolan</creator><creator>Schmittle, Matthew</creator><creator>Lee, JoonHo</creator><creator>Yuan, Wentao</creator><creator>Chen, Zoey</creator><creator>Deng, Samuel</creator><creator>Okopal, Greg</creator><creator>Fox, Dieter</creator><creator>Boots, Byron</creator><creator>Shaban, Amirreza</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230529</creationdate><title>TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation</title><author>Meng, Xiangyun ; Hatch, Nathan ; Lambert, Alexander ; Li, Anqi ; Wagener, Nolan ; Schmittle, Matthew ; Lee, JoonHo ; Yuan, Wentao ; Chen, Zoey ; Deng, Samuel ; Okopal, Greg ; Fox, Dieter ; Boots, Byron ; Shaban, Amirreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27921734963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>High speed</topic><topic>Modelling</topic><topic>Navigation</topic><topic>System effectiveness</topic><topic>Terrain models</topic><topic>Vision systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xiangyun</creatorcontrib><creatorcontrib>Hatch, Nathan</creatorcontrib><creatorcontrib>Lambert, Alexander</creatorcontrib><creatorcontrib>Li, Anqi</creatorcontrib><creatorcontrib>Wagener, Nolan</creatorcontrib><creatorcontrib>Schmittle, Matthew</creatorcontrib><creatorcontrib>Lee, JoonHo</creatorcontrib><creatorcontrib>Yuan, Wentao</creatorcontrib><creatorcontrib>Chen, Zoey</creatorcontrib><creatorcontrib>Deng, Samuel</creatorcontrib><creatorcontrib>Okopal, Greg</creatorcontrib><creatorcontrib>Fox, Dieter</creatorcontrib><creatorcontrib>Boots, Byron</creatorcontrib><creatorcontrib>Shaban, Amirreza</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xiangyun</au><au>Hatch, Nathan</au><au>Lambert, Alexander</au><au>Li, Anqi</au><au>Wagener, Nolan</au><au>Schmittle, Matthew</au><au>Lee, JoonHo</au><au>Yuan, Wentao</au><au>Chen, Zoey</au><au>Deng, Samuel</au><au>Okopal, Greg</au><au>Fox, Dieter</au><au>Boots, Byron</au><au>Shaban, Amirreza</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation</atitle><jtitle>arXiv.org</jtitle><date>2023-05-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2792173496 |
source | Free E- Journals |
subjects | Cameras Estimation High speed Modelling Navigation System effectiveness Terrain models Vision systems |
title | TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TerrainNet:%20Visual%20Modeling%20of%20Complex%20Terrain%20for%20High-speed,%20Off-road%20Navigation&rft.jtitle=arXiv.org&rft.au=Meng,%20Xiangyun&rft.date=2023-05-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2792173496%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792173496&rft_id=info:pmid/&rfr_iscdi=true |