TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation

Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Meng, Xiangyun, Hatch, Nathan, Lambert, Alexander, Li, Anqi, Wagener, Nolan, Schmittle, Matthew, Lee, JoonHo, Yuan, Wentao, Chen, Zoey, Deng, Samuel, Okopal, Greg, Fox, Dieter, Boots, Byron, Shaban, Amirreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Meng, Xiangyun
Hatch, Nathan
Lambert, Alexander
Li, Anqi
Wagener, Nolan
Schmittle, Matthew
Lee, JoonHo
Yuan, Wentao
Chen, Zoey
Deng, Samuel
Okopal, Greg
Fox, Dieter
Boots, Byron
Shaban, Amirreza
description Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2792173496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792173496</sourcerecordid><originalsourceid>FETCH-proquest_journals_27921734963</originalsourceid><addsrcrecordid>eNqNyk8LgjAYgPERBEn5HV7o2kA3_2RXKbxUENJVBm42WXtt0-jj18EP0Ok5PL8FCRjnMd0njK1I6H0fRRHLcpamPCC3WjontL3I8QB37Sdh4IytNNp2gApKfA5GfmBmoNBBpbsH9YOU7Q6uSlGHooWLeOtOjBrthiyVMF6Gc9dkezrWZUUHh69J-rHpcXL2txqWFyzOeVJk_D_1BX81PuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792173496</pqid></control><display><type>article</type><title>TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation</title><source>Free E- Journals</source><creator>Meng, Xiangyun ; Hatch, Nathan ; Lambert, Alexander ; Li, Anqi ; Wagener, Nolan ; Schmittle, Matthew ; Lee, JoonHo ; Yuan, Wentao ; Chen, Zoey ; Deng, Samuel ; Okopal, Greg ; Fox, Dieter ; Boots, Byron ; Shaban, Amirreza</creator><creatorcontrib>Meng, Xiangyun ; Hatch, Nathan ; Lambert, Alexander ; Li, Anqi ; Wagener, Nolan ; Schmittle, Matthew ; Lee, JoonHo ; Yuan, Wentao ; Chen, Zoey ; Deng, Samuel ; Okopal, Greg ; Fox, Dieter ; Boots, Byron ; Shaban, Amirreza</creatorcontrib><description>Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Estimation ; High speed ; Modelling ; Navigation ; System effectiveness ; Terrain models ; Vision systems</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Meng, Xiangyun</creatorcontrib><creatorcontrib>Hatch, Nathan</creatorcontrib><creatorcontrib>Lambert, Alexander</creatorcontrib><creatorcontrib>Li, Anqi</creatorcontrib><creatorcontrib>Wagener, Nolan</creatorcontrib><creatorcontrib>Schmittle, Matthew</creatorcontrib><creatorcontrib>Lee, JoonHo</creatorcontrib><creatorcontrib>Yuan, Wentao</creatorcontrib><creatorcontrib>Chen, Zoey</creatorcontrib><creatorcontrib>Deng, Samuel</creatorcontrib><creatorcontrib>Okopal, Greg</creatorcontrib><creatorcontrib>Fox, Dieter</creatorcontrib><creatorcontrib>Boots, Byron</creatorcontrib><creatorcontrib>Shaban, Amirreza</creatorcontrib><title>TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation</title><title>arXiv.org</title><description>Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario.</description><subject>Cameras</subject><subject>Estimation</subject><subject>High speed</subject><subject>Modelling</subject><subject>Navigation</subject><subject>System effectiveness</subject><subject>Terrain models</subject><subject>Vision systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyk8LgjAYgPERBEn5HV7o2kA3_2RXKbxUENJVBm42WXtt0-jj18EP0Ok5PL8FCRjnMd0njK1I6H0fRRHLcpamPCC3WjontL3I8QB37Sdh4IytNNp2gApKfA5GfmBmoNBBpbsH9YOU7Q6uSlGHooWLeOtOjBrthiyVMF6Gc9dkezrWZUUHh69J-rHpcXL2txqWFyzOeVJk_D_1BX81PuU</recordid><startdate>20230529</startdate><enddate>20230529</enddate><creator>Meng, Xiangyun</creator><creator>Hatch, Nathan</creator><creator>Lambert, Alexander</creator><creator>Li, Anqi</creator><creator>Wagener, Nolan</creator><creator>Schmittle, Matthew</creator><creator>Lee, JoonHo</creator><creator>Yuan, Wentao</creator><creator>Chen, Zoey</creator><creator>Deng, Samuel</creator><creator>Okopal, Greg</creator><creator>Fox, Dieter</creator><creator>Boots, Byron</creator><creator>Shaban, Amirreza</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230529</creationdate><title>TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation</title><author>Meng, Xiangyun ; Hatch, Nathan ; Lambert, Alexander ; Li, Anqi ; Wagener, Nolan ; Schmittle, Matthew ; Lee, JoonHo ; Yuan, Wentao ; Chen, Zoey ; Deng, Samuel ; Okopal, Greg ; Fox, Dieter ; Boots, Byron ; Shaban, Amirreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27921734963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>High speed</topic><topic>Modelling</topic><topic>Navigation</topic><topic>System effectiveness</topic><topic>Terrain models</topic><topic>Vision systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Meng, Xiangyun</creatorcontrib><creatorcontrib>Hatch, Nathan</creatorcontrib><creatorcontrib>Lambert, Alexander</creatorcontrib><creatorcontrib>Li, Anqi</creatorcontrib><creatorcontrib>Wagener, Nolan</creatorcontrib><creatorcontrib>Schmittle, Matthew</creatorcontrib><creatorcontrib>Lee, JoonHo</creatorcontrib><creatorcontrib>Yuan, Wentao</creatorcontrib><creatorcontrib>Chen, Zoey</creatorcontrib><creatorcontrib>Deng, Samuel</creatorcontrib><creatorcontrib>Okopal, Greg</creatorcontrib><creatorcontrib>Fox, Dieter</creatorcontrib><creatorcontrib>Boots, Byron</creatorcontrib><creatorcontrib>Shaban, Amirreza</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Xiangyun</au><au>Hatch, Nathan</au><au>Lambert, Alexander</au><au>Li, Anqi</au><au>Wagener, Nolan</au><au>Schmittle, Matthew</au><au>Lee, JoonHo</au><au>Yuan, Wentao</au><au>Chen, Zoey</au><au>Deng, Samuel</au><au>Okopal, Greg</au><au>Fox, Dieter</au><au>Boots, Byron</au><au>Shaban, Amirreza</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation</atitle><jtitle>arXiv.org</jtitle><date>2023-05-29</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Effective use of camera-based vision systems is essential for robust performance in autonomous off-road driving, particularly in the high-speed regime. Despite success in structured, on-road settings, current end-to-end approaches for scene prediction have yet to be successfully adapted for complex outdoor terrain. To this end, we present TerrainNet, a vision-based terrain perception system for semantic and geometric terrain prediction for aggressive, off-road navigation. The approach relies on several key insights and practical considerations for achieving reliable terrain modeling. The network includes a multi-headed output representation to capture fine- and coarse-grained terrain features necessary for estimating traversability. Accurate depth estimation is achieved using self-supervised depth completion with multi-view RGB and stereo inputs. Requirements for real-time performance and fast inference speeds are met using efficient, learned image feature projections. Furthermore, the model is trained on a large-scale, real-world off-road dataset collected across a variety of diverse outdoor environments. We show how TerrainNet can also be used for costmap prediction and provide a detailed framework for integration into a planning module. We demonstrate the performance of TerrainNet through extensive comparison to current state-of-the-art baselines for camera-only scene prediction. Finally, we showcase the effectiveness of integrating TerrainNet within a complete autonomous-driving stack by conducting a real-world vehicle test in a challenging off-road scenario.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2792173496
source Free E- Journals
subjects Cameras
Estimation
High speed
Modelling
Navigation
System effectiveness
Terrain models
Vision systems
title TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TerrainNet:%20Visual%20Modeling%20of%20Complex%20Terrain%20for%20High-speed,%20Off-road%20Navigation&rft.jtitle=arXiv.org&rft.au=Meng,%20Xiangyun&rft.date=2023-05-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2792173496%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792173496&rft_id=info:pmid/&rfr_iscdi=true