NeuralMind-UNICAMP at 2022 TREC NeuCLIR: Large Boring Rerankers for Cross-lingual Retrieval

This paper reports on a study of cross-lingual information retrieval (CLIR) using the mT5-XXL reranker on the NeuCLIR track of TREC 2022. Perhaps the biggest contribution of this study is the finding that despite the mT5 model being fine-tuned only on query-document pairs of the same language it pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Jeronymo, Vitor, Lotufo, Roberto, Nogueira, Rodrigo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jeronymo, Vitor
Lotufo, Roberto
Nogueira, Rodrigo
description This paper reports on a study of cross-lingual information retrieval (CLIR) using the mT5-XXL reranker on the NeuCLIR track of TREC 2022. Perhaps the biggest contribution of this study is the finding that despite the mT5 model being fine-tuned only on query-document pairs of the same language it proved to be viable for CLIR tasks, where query-document pairs are in different languages, even in the presence of suboptimal first-stage retrieval performance. The results of the study show outstanding performance across all tasks and languages, leading to a high number of winning positions. Finally, this study provides valuable insights into the use of mT5 in CLIR tasks and highlights its potential as a viable solution. For reproduction refer to https://github.com/unicamp-dl/NeuCLIR22-mT5
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2792172625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792172625</sourcerecordid><originalsourceid>FETCH-proquest_journals_27921726253</originalsourceid><addsrcrecordid>eNqNysEKgkAUQNEhCJLyHx60FsZnarWrwUgwCbFVCxloFG1w6o32_bnoA1rdxbkz5mAQ-N52g7hgrrUd5xyjGMMwcNg9VyNJfWn7h3fLU3G4XEEOgBwRyiIRMLnI0mIPmaRGwdFQ2zdQKJL9U5GF2hAIMtZ6eoJR6skGatVH6hWb11Jb5f66ZOtTUoqz9yLzHpUdqs6M1E9UYbxDP8YIw-C_6wuRS0AF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792172625</pqid></control><display><type>article</type><title>NeuralMind-UNICAMP at 2022 TREC NeuCLIR: Large Boring Rerankers for Cross-lingual Retrieval</title><source>Free E- Journals</source><creator>Jeronymo, Vitor ; Lotufo, Roberto ; Nogueira, Rodrigo</creator><creatorcontrib>Jeronymo, Vitor ; Lotufo, Roberto ; Nogueira, Rodrigo</creatorcontrib><description>This paper reports on a study of cross-lingual information retrieval (CLIR) using the mT5-XXL reranker on the NeuCLIR track of TREC 2022. Perhaps the biggest contribution of this study is the finding that despite the mT5 model being fine-tuned only on query-document pairs of the same language it proved to be viable for CLIR tasks, where query-document pairs are in different languages, even in the presence of suboptimal first-stage retrieval performance. The results of the study show outstanding performance across all tasks and languages, leading to a high number of winning positions. Finally, this study provides valuable insights into the use of mT5 in CLIR tasks and highlights its potential as a viable solution. For reproduction refer to https://github.com/unicamp-dl/NeuCLIR22-mT5</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Documents ; Information retrieval ; Languages</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jeronymo, Vitor</creatorcontrib><creatorcontrib>Lotufo, Roberto</creatorcontrib><creatorcontrib>Nogueira, Rodrigo</creatorcontrib><title>NeuralMind-UNICAMP at 2022 TREC NeuCLIR: Large Boring Rerankers for Cross-lingual Retrieval</title><title>arXiv.org</title><description>This paper reports on a study of cross-lingual information retrieval (CLIR) using the mT5-XXL reranker on the NeuCLIR track of TREC 2022. Perhaps the biggest contribution of this study is the finding that despite the mT5 model being fine-tuned only on query-document pairs of the same language it proved to be viable for CLIR tasks, where query-document pairs are in different languages, even in the presence of suboptimal first-stage retrieval performance. The results of the study show outstanding performance across all tasks and languages, leading to a high number of winning positions. Finally, this study provides valuable insights into the use of mT5 in CLIR tasks and highlights its potential as a viable solution. For reproduction refer to https://github.com/unicamp-dl/NeuCLIR22-mT5</description><subject>Documents</subject><subject>Information retrieval</subject><subject>Languages</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAUQNEhCJLyHx60FsZnarWrwUgwCbFVCxloFG1w6o32_bnoA1rdxbkz5mAQ-N52g7hgrrUd5xyjGMMwcNg9VyNJfWn7h3fLU3G4XEEOgBwRyiIRMLnI0mIPmaRGwdFQ2zdQKJL9U5GF2hAIMtZ6eoJR6skGatVH6hWb11Jb5f66ZOtTUoqz9yLzHpUdqs6M1E9UYbxDP8YIw-C_6wuRS0AF</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Jeronymo, Vitor</creator><creator>Lotufo, Roberto</creator><creator>Nogueira, Rodrigo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230328</creationdate><title>NeuralMind-UNICAMP at 2022 TREC NeuCLIR: Large Boring Rerankers for Cross-lingual Retrieval</title><author>Jeronymo, Vitor ; Lotufo, Roberto ; Nogueira, Rodrigo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27921726253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Documents</topic><topic>Information retrieval</topic><topic>Languages</topic><toplevel>online_resources</toplevel><creatorcontrib>Jeronymo, Vitor</creatorcontrib><creatorcontrib>Lotufo, Roberto</creatorcontrib><creatorcontrib>Nogueira, Rodrigo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeronymo, Vitor</au><au>Lotufo, Roberto</au><au>Nogueira, Rodrigo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>NeuralMind-UNICAMP at 2022 TREC NeuCLIR: Large Boring Rerankers for Cross-lingual Retrieval</atitle><jtitle>arXiv.org</jtitle><date>2023-03-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper reports on a study of cross-lingual information retrieval (CLIR) using the mT5-XXL reranker on the NeuCLIR track of TREC 2022. Perhaps the biggest contribution of this study is the finding that despite the mT5 model being fine-tuned only on query-document pairs of the same language it proved to be viable for CLIR tasks, where query-document pairs are in different languages, even in the presence of suboptimal first-stage retrieval performance. The results of the study show outstanding performance across all tasks and languages, leading to a high number of winning positions. Finally, this study provides valuable insights into the use of mT5 in CLIR tasks and highlights its potential as a viable solution. For reproduction refer to https://github.com/unicamp-dl/NeuCLIR22-mT5</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2792172625
source Free E- Journals
subjects Documents
Information retrieval
Languages
title NeuralMind-UNICAMP at 2022 TREC NeuCLIR: Large Boring Rerankers for Cross-lingual Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=NeuralMind-UNICAMP%20at%202022%20TREC%20NeuCLIR:%20Large%20Boring%20Rerankers%20for%20Cross-lingual%20Retrieval&rft.jtitle=arXiv.org&rft.au=Jeronymo,%20Vitor&rft.date=2023-03-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2792172625%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792172625&rft_id=info:pmid/&rfr_iscdi=true