μ–essential – Supplemented modules

Consider M is any identity ring and let W is a unital lefting M- module. Let L be a sub.module of an – M module1W , a sub.module K in W is called a “μ* - essential supplement1” of L in W , when W= L+K and L ∩ K≪μ*K. W is called1 μ* - essential – supplemented1 module , if each sub.module in W has1 μ*...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wadi, Adnan Saleh, Hasan, Wasan Khalid
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2591
creator Wadi, Adnan Saleh
Hasan, Wasan Khalid
description Consider M is any identity ring and let W is a unital lefting M- module. Let L be a sub.module of an – M module1W , a sub.module K in W is called a “μ* - essential supplement1” of L in W , when W= L+K and L ∩ K≪μ*K. W is called1 μ* - essential – supplemented1 module , if each sub.module in W has1 μ* - essential – supplement1 in.W. also an M- module W is called1 amplye μ* -essential – supplemented1 when any sub-module L , K in W with W = L+K , there exists μ* essential –supplement T of L contained in K. M- module W is called1 cofinitly μ* – essential – supplemented1 ( denoted by cof – essential. Supplemented in W ). If each cofinite sub-module of W has μ*– essential – supplement . and module W is called1 ⊕ μ*–essential – supplemented1 module if each sub-module in W has μ*–essential –supplement1 which is a direct- summand in W . Let T and L be sub-modules of W whenT ≤L≤W, T is called μ*e – co – essential sub-module of L in W ( denoted by T ≤μce* L in W ) , if LT≪μe*WT. A characterizations of μ* -essential – ce T e T supplemented and a conditions under which the direct sum and the finite sum of μ* −essential –supplemented , amply μ* -essential – supplemented , cofinitly μ* – essential – supplemented , and the ⊕ μ*–essential supplemented is a μ* −essential – supplemented , amply μ* -essential – supplemented , cofinitly μ* – essential – supplemented , and the ⊕ μ*–essential – supplemented respectively, are given.
doi_str_mv 10.1063/5.0121954
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2792138269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792138269</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1684-323b5d121eaaa3a837f8eee0446cb2ff06d73b9ae7975012f65286d2232c56f3</originalsourceid><addsrcrecordid>eNotUEtKxEAUbETBcXThDQIuBCFj9-v_UgZ_MODCWbhrOslryJCf6WThzjt4Hc_gITyJLTOrooqiqihCLhldMar4rVxRBsxKcUQWTEqWa8XUMVlQakUOgr-dkrMYd5SC1dosyPXP9-_nF8aI3VT7Jkske52HocE2KVhlbV_NDcZzchJ8E_HigEuyfbjfrp_yzcvj8_pukw9MGZFz4IWs0gL03nNvuA4GEakQqiwgBKoqzQvrUVst09KgJBhVAXAopQp8Sa72scPYv88YJ7fr57FLjQ60BcYNKJtcN3tXLOvJT3XfuWGsWz9-OEbd_w9OusMP_A_NEk_-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2792138269</pqid></control><display><type>conference_proceeding</type><title>μ–essential – Supplemented modules</title><source>AIP Journals Complete</source><creator>Wadi, Adnan Saleh ; Hasan, Wasan Khalid</creator><contributor>Agarwal, Parul ; Obaid, Ahmed J. ; Albermany, Salah A. ; Banerjee, Jyoti Sekhar</contributor><creatorcontrib>Wadi, Adnan Saleh ; Hasan, Wasan Khalid ; Agarwal, Parul ; Obaid, Ahmed J. ; Albermany, Salah A. ; Banerjee, Jyoti Sekhar</creatorcontrib><description>Consider M is any identity ring and let W is a unital lefting M- module. Let L be a sub.module of an – M module1W , a sub.module K in W is called a “μ* - essential supplement1” of L in W , when W= L+K and L ∩ K≪μ*K. W is called1 μ* - essential – supplemented1 module , if each sub.module in W has1 μ* - essential – supplement1 in.W. also an M- module W is called1 amplye μ* -essential – supplemented1 when any sub-module L , K in W with W = L+K , there exists μ* essential –supplement T of L contained in K. M- module W is called1 cofinitly μ* – essential – supplemented1 ( denoted by cof – essential. Supplemented in W ). If each cofinite sub-module of W has μ*– essential – supplement . and module W is called1 ⊕ μ*–essential – supplemented1 module if each sub-module in W has μ*–essential –supplement1 which is a direct- summand in W . Let T and L be sub-modules of W whenT ≤L≤W, T is called μ*e – co – essential sub-module of L in W ( denoted by T ≤μce* L in W ) , if LT≪μe*WT. A characterizations of μ* -essential – ce T e T supplemented and a conditions under which the direct sum and the finite sum of μ* −essential –supplemented , amply μ* -essential – supplemented , cofinitly μ* – essential – supplemented , and the ⊕ μ*–essential supplemented is a μ* −essential – supplemented , amply μ* -essential – supplemented , cofinitly μ* – essential – supplemented , and the ⊕ μ*–essential – supplemented respectively, are given.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0121954</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Modules ; Rings (mathematics)</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2591 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0121954$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Agarwal, Parul</contributor><contributor>Obaid, Ahmed J.</contributor><contributor>Albermany, Salah A.</contributor><contributor>Banerjee, Jyoti Sekhar</contributor><creatorcontrib>Wadi, Adnan Saleh</creatorcontrib><creatorcontrib>Hasan, Wasan Khalid</creatorcontrib><title>μ–essential – Supplemented modules</title><title>AIP Conference Proceedings</title><description>Consider M is any identity ring and let W is a unital lefting M- module. Let L be a sub.module of an – M module1W , a sub.module K in W is called a “μ* - essential supplement1” of L in W , when W= L+K and L ∩ K≪μ*K. W is called1 μ* - essential – supplemented1 module , if each sub.module in W has1 μ* - essential – supplement1 in.W. also an M- module W is called1 amplye μ* -essential – supplemented1 when any sub-module L , K in W with W = L+K , there exists μ* essential –supplement T of L contained in K. M- module W is called1 cofinitly μ* – essential – supplemented1 ( denoted by cof – essential. Supplemented in W ). If each cofinite sub-module of W has μ*– essential – supplement . and module W is called1 ⊕ μ*–essential – supplemented1 module if each sub-module in W has μ*–essential –supplement1 which is a direct- summand in W . Let T and L be sub-modules of W whenT ≤L≤W, T is called μ*e – co – essential sub-module of L in W ( denoted by T ≤μce* L in W ) , if LT≪μe*WT. A characterizations of μ* -essential – ce T e T supplemented and a conditions under which the direct sum and the finite sum of μ* −essential –supplemented , amply μ* -essential – supplemented , cofinitly μ* – essential – supplemented , and the ⊕ μ*–essential supplemented is a μ* −essential – supplemented , amply μ* -essential – supplemented , cofinitly μ* – essential – supplemented , and the ⊕ μ*–essential – supplemented respectively, are given.</description><subject>Modules</subject><subject>Rings (mathematics)</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtKxEAUbETBcXThDQIuBCFj9-v_UgZ_MODCWbhrOslryJCf6WThzjt4Hc_gITyJLTOrooqiqihCLhldMar4rVxRBsxKcUQWTEqWa8XUMVlQakUOgr-dkrMYd5SC1dosyPXP9-_nF8aI3VT7Jkske52HocE2KVhlbV_NDcZzchJ8E_HigEuyfbjfrp_yzcvj8_pukw9MGZFz4IWs0gL03nNvuA4GEakQqiwgBKoqzQvrUVst09KgJBhVAXAopQp8Sa72scPYv88YJ7fr57FLjQ60BcYNKJtcN3tXLOvJT3XfuWGsWz9-OEbd_w9OusMP_A_NEk_-</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>Wadi, Adnan Saleh</creator><creator>Hasan, Wasan Khalid</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230329</creationdate><title>μ–essential – Supplemented modules</title><author>Wadi, Adnan Saleh ; Hasan, Wasan Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1684-323b5d121eaaa3a837f8eee0446cb2ff06d73b9ae7975012f65286d2232c56f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Modules</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wadi, Adnan Saleh</creatorcontrib><creatorcontrib>Hasan, Wasan Khalid</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wadi, Adnan Saleh</au><au>Hasan, Wasan Khalid</au><au>Agarwal, Parul</au><au>Obaid, Ahmed J.</au><au>Albermany, Salah A.</au><au>Banerjee, Jyoti Sekhar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>μ–essential – Supplemented modules</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-03-29</date><risdate>2023</risdate><volume>2591</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Consider M is any identity ring and let W is a unital lefting M- module. Let L be a sub.module of an – M module1W , a sub.module K in W is called a “μ* - essential supplement1” of L in W , when W= L+K and L ∩ K≪μ*K. W is called1 μ* - essential – supplemented1 module , if each sub.module in W has1 μ* - essential – supplement1 in.W. also an M- module W is called1 amplye μ* -essential – supplemented1 when any sub-module L , K in W with W = L+K , there exists μ* essential –supplement T of L contained in K. M- module W is called1 cofinitly μ* – essential – supplemented1 ( denoted by cof – essential. Supplemented in W ). If each cofinite sub-module of W has μ*– essential – supplement . and module W is called1 ⊕ μ*–essential – supplemented1 module if each sub-module in W has μ*–essential –supplement1 which is a direct- summand in W . Let T and L be sub-modules of W whenT ≤L≤W, T is called μ*e – co – essential sub-module of L in W ( denoted by T ≤μce* L in W ) , if LT≪μe*WT. A characterizations of μ* -essential – ce T e T supplemented and a conditions under which the direct sum and the finite sum of μ* −essential –supplemented , amply μ* -essential – supplemented , cofinitly μ* – essential – supplemented , and the ⊕ μ*–essential supplemented is a μ* −essential – supplemented , amply μ* -essential – supplemented , cofinitly μ* – essential – supplemented , and the ⊕ μ*–essential – supplemented respectively, are given.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0121954</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2591 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2792138269
source AIP Journals Complete
subjects Modules
Rings (mathematics)
title μ–essential – Supplemented modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=%CE%BC%E2%80%93essential%20%E2%80%93%20Supplemented%20modules&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Wadi,%20Adnan%20Saleh&rft.date=2023-03-29&rft.volume=2591&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0121954&rft_dat=%3Cproquest_scita%3E2792138269%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792138269&rft_id=info:pmid/&rfr_iscdi=true