Similarity measurement’s comparison with mapping and localization in large-scale
Simultaneous Localization and Mapping (SLAM) is a mission or task that involves estimating a robot's location and reconstructing its surroundings based on sensor data. For autonomous mobile robots, the capacity to learn a regular model of its environment is a prerequisite. The fact that loops i...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2591 |
creator | Satea, Huda Dhari Ibrahem, Amer A. Faiq, Maher Abbood, Zainab Ali Ahmed, Saadaldeen Rashid |
description | Simultaneous Localization and Mapping (SLAM) is a mission or task that involves estimating a robot's location and reconstructing its surroundings based on sensor data. For autonomous mobile robots, the capacity to learn a regular model of its environment is a prerequisite. The fact that loops in the environment generate stimulating data association challenges is a particularly difficult problem in obtaining surroundings maps of closing loops. One of the most difficult aspects of SLAM research is loop closing. The increasing uncertainty in local mapping and the productivity of the local map representation contribute to a given environment's difficulties in loop closures. The most difficult aspect of SLAM is management uncertainty. False matches caused by a lack of clarity in the environment are one of the most significant obstacles to properly closing huge loops. When evaluating whether or not to accept a map-match, there are a variety of methodologies or similarity metrics to consider. In order to determine the least map-match error, this study examined different similarity metrics such as ((Jaccard, Euclidean, Cityblock, Chebyshev, Cosine, Spearman, Variable, Correlation). When comparing the various similarity metrics, the Cosine technique had the lowest inaccuracy of all the methods, while the Correlation method had the fastest execution time. |
doi_str_mv | 10.1063/5.0119964 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2792138122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2792138122</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2034-f2851625174a6881b768301d51f90eb6af83072a267a45d213836459b8f616a43</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgTpiak-tkKUWrUBC8gLuQdjI1ZW4mU6WufA1fzycxtQV3rg7n_N-5_QidAhkBkexCjAiA1pLvoQEIAZmSIPfRgBDNM8rZ8yE6inFJCNVK5QN0_-BrX9ng-zWunY2r4GrX9N-fXxHP27pLSmwb_O77F1zbrvPNAtumwFU7t5X_sL1Pqm9wGrFwWUxFd4wOSltFd7KLQ_R0ffU4vsmmd5Pb8eU06yhhPCtpLkBSAYpbmecwUzJnBAoBpSZuJm2ZUkUtlcpyUVBgOZNc6FleppcsZ0N0tp3bhfZ15WJvlu0qNGmloUpveKA0UedbKs59_3uu6YKvbVibtzYYYXZ-ma4o_4OBmI3Bfw3sBxefbK0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2792138122</pqid></control><display><type>conference_proceeding</type><title>Similarity measurement’s comparison with mapping and localization in large-scale</title><source>AIP Journals</source><creator>Satea, Huda Dhari ; Ibrahem, Amer A. ; Faiq, Maher ; Abbood, Zainab Ali ; Ahmed, Saadaldeen Rashid</creator><contributor>Agarwal, Parul ; Obaid, Ahmed J. ; Albermany, Salah A. ; Banerjee, Jyoti Sekhar</contributor><creatorcontrib>Satea, Huda Dhari ; Ibrahem, Amer A. ; Faiq, Maher ; Abbood, Zainab Ali ; Ahmed, Saadaldeen Rashid ; Agarwal, Parul ; Obaid, Ahmed J. ; Albermany, Salah A. ; Banerjee, Jyoti Sekhar</creatorcontrib><description>Simultaneous Localization and Mapping (SLAM) is a mission or task that involves estimating a robot's location and reconstructing its surroundings based on sensor data. For autonomous mobile robots, the capacity to learn a regular model of its environment is a prerequisite. The fact that loops in the environment generate stimulating data association challenges is a particularly difficult problem in obtaining surroundings maps of closing loops. One of the most difficult aspects of SLAM research is loop closing. The increasing uncertainty in local mapping and the productivity of the local map representation contribute to a given environment's difficulties in loop closures. The most difficult aspect of SLAM is management uncertainty. False matches caused by a lack of clarity in the environment are one of the most significant obstacles to properly closing huge loops. When evaluating whether or not to accept a map-match, there are a variety of methodologies or similarity metrics to consider. In order to determine the least map-match error, this study examined different similarity metrics such as ((Jaccard, Euclidean, Cityblock, Chebyshev, Cosine, Spearman, Variable, Correlation). When comparing the various similarity metrics, the Cosine technique had the lowest inaccuracy of all the methods, while the Correlation method had the fastest execution time.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0119964</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chebyshev approximation ; Error analysis ; Localization ; Robots ; Similarity ; Simultaneous localization and mapping ; Uncertainty</subject><ispartof>AIP conference proceedings, 2023, Vol.2591 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0119964$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Agarwal, Parul</contributor><contributor>Obaid, Ahmed J.</contributor><contributor>Albermany, Salah A.</contributor><contributor>Banerjee, Jyoti Sekhar</contributor><creatorcontrib>Satea, Huda Dhari</creatorcontrib><creatorcontrib>Ibrahem, Amer A.</creatorcontrib><creatorcontrib>Faiq, Maher</creatorcontrib><creatorcontrib>Abbood, Zainab Ali</creatorcontrib><creatorcontrib>Ahmed, Saadaldeen Rashid</creatorcontrib><title>Similarity measurement’s comparison with mapping and localization in large-scale</title><title>AIP conference proceedings</title><description>Simultaneous Localization and Mapping (SLAM) is a mission or task that involves estimating a robot's location and reconstructing its surroundings based on sensor data. For autonomous mobile robots, the capacity to learn a regular model of its environment is a prerequisite. The fact that loops in the environment generate stimulating data association challenges is a particularly difficult problem in obtaining surroundings maps of closing loops. One of the most difficult aspects of SLAM research is loop closing. The increasing uncertainty in local mapping and the productivity of the local map representation contribute to a given environment's difficulties in loop closures. The most difficult aspect of SLAM is management uncertainty. False matches caused by a lack of clarity in the environment are one of the most significant obstacles to properly closing huge loops. When evaluating whether or not to accept a map-match, there are a variety of methodologies or similarity metrics to consider. In order to determine the least map-match error, this study examined different similarity metrics such as ((Jaccard, Euclidean, Cityblock, Chebyshev, Cosine, Spearman, Variable, Correlation). When comparing the various similarity metrics, the Cosine technique had the lowest inaccuracy of all the methods, while the Correlation method had the fastest execution time.</description><subject>Chebyshev approximation</subject><subject>Error analysis</subject><subject>Localization</subject><subject>Robots</subject><subject>Similarity</subject><subject>Simultaneous localization and mapping</subject><subject>Uncertainty</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yDgTpiak-tkKUWrUBC8gLuQdjI1ZW4mU6WufA1fzycxtQV3rg7n_N-5_QidAhkBkexCjAiA1pLvoQEIAZmSIPfRgBDNM8rZ8yE6inFJCNVK5QN0_-BrX9ng-zWunY2r4GrX9N-fXxHP27pLSmwb_O77F1zbrvPNAtumwFU7t5X_sL1Pqm9wGrFwWUxFd4wOSltFd7KLQ_R0ffU4vsmmd5Pb8eU06yhhPCtpLkBSAYpbmecwUzJnBAoBpSZuJm2ZUkUtlcpyUVBgOZNc6FleppcsZ0N0tp3bhfZ15WJvlu0qNGmloUpveKA0UedbKs59_3uu6YKvbVibtzYYYXZ-ma4o_4OBmI3Bfw3sBxefbK0</recordid><startdate>20230329</startdate><enddate>20230329</enddate><creator>Satea, Huda Dhari</creator><creator>Ibrahem, Amer A.</creator><creator>Faiq, Maher</creator><creator>Abbood, Zainab Ali</creator><creator>Ahmed, Saadaldeen Rashid</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230329</creationdate><title>Similarity measurement’s comparison with mapping and localization in large-scale</title><author>Satea, Huda Dhari ; Ibrahem, Amer A. ; Faiq, Maher ; Abbood, Zainab Ali ; Ahmed, Saadaldeen Rashid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2034-f2851625174a6881b768301d51f90eb6af83072a267a45d213836459b8f616a43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chebyshev approximation</topic><topic>Error analysis</topic><topic>Localization</topic><topic>Robots</topic><topic>Similarity</topic><topic>Simultaneous localization and mapping</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satea, Huda Dhari</creatorcontrib><creatorcontrib>Ibrahem, Amer A.</creatorcontrib><creatorcontrib>Faiq, Maher</creatorcontrib><creatorcontrib>Abbood, Zainab Ali</creatorcontrib><creatorcontrib>Ahmed, Saadaldeen Rashid</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satea, Huda Dhari</au><au>Ibrahem, Amer A.</au><au>Faiq, Maher</au><au>Abbood, Zainab Ali</au><au>Ahmed, Saadaldeen Rashid</au><au>Agarwal, Parul</au><au>Obaid, Ahmed J.</au><au>Albermany, Salah A.</au><au>Banerjee, Jyoti Sekhar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Similarity measurement’s comparison with mapping and localization in large-scale</atitle><btitle>AIP conference proceedings</btitle><date>2023-03-29</date><risdate>2023</risdate><volume>2591</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Simultaneous Localization and Mapping (SLAM) is a mission or task that involves estimating a robot's location and reconstructing its surroundings based on sensor data. For autonomous mobile robots, the capacity to learn a regular model of its environment is a prerequisite. The fact that loops in the environment generate stimulating data association challenges is a particularly difficult problem in obtaining surroundings maps of closing loops. One of the most difficult aspects of SLAM research is loop closing. The increasing uncertainty in local mapping and the productivity of the local map representation contribute to a given environment's difficulties in loop closures. The most difficult aspect of SLAM is management uncertainty. False matches caused by a lack of clarity in the environment are one of the most significant obstacles to properly closing huge loops. When evaluating whether or not to accept a map-match, there are a variety of methodologies or similarity metrics to consider. In order to determine the least map-match error, this study examined different similarity metrics such as ((Jaccard, Euclidean, Cityblock, Chebyshev, Cosine, Spearman, Variable, Correlation). When comparing the various similarity metrics, the Cosine technique had the lowest inaccuracy of all the methods, while the Correlation method had the fastest execution time.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0119964</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2591 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2792138122 |
source | AIP Journals |
subjects | Chebyshev approximation Error analysis Localization Robots Similarity Simultaneous localization and mapping Uncertainty |
title | Similarity measurement’s comparison with mapping and localization in large-scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Similarity%20measurement%E2%80%99s%20comparison%20with%20mapping%20and%20localization%20in%20large-scale&rft.btitle=AIP%20conference%20proceedings&rft.au=Satea,%20Huda%20Dhari&rft.date=2023-03-29&rft.volume=2591&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0119964&rft_dat=%3Cproquest_scita%3E2792138122%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792138122&rft_id=info:pmid/&rfr_iscdi=true |