Equivariant Observers for Second-Order Systems on Matrix Lie Groups
This article develops an equivariant symmetry for second-order kinematic systems on matrix Lie groups and uses this symmetry for observer design. The state of a second-order kinematic system on a matrix Lie group is naturally posed on the tangent bundle of the group with the inputs lying in the tang...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2023-04, Vol.68 (4), p.2468-2474 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2474 |
---|---|
container_issue | 4 |
container_start_page | 2468 |
container_title | IEEE transactions on automatic control |
container_volume | 68 |
creator | Ng, Yonhon van Goor, Pieter Hamel, Tarek Mahony, Robert |
description | This article develops an equivariant symmetry for second-order kinematic systems on matrix Lie groups and uses this symmetry for observer design. The state of a second-order kinematic system on a matrix Lie group is naturally posed on the tangent bundle of the group with the inputs lying in the tangent of the tangent bundle known as the double-tangent bundle. We provide a simple parameterization of both the tangent bundle state-space and the input space (the fiber space of the double-tangent bundle) and then introduce a semidirect product group and group actions onto both the state and input spaces. We show that with the proposed group actions, the second-order kinematics are equivariant. An equivariant lift of the kinematics onto the symmetry group is derived and used to design nonlinear observers on the lifted state-space using nonlinear constructive design techniques. The observer design is specialized to kinematics on groups that themselves admit a semidirect product structure and include applications in rigid-body motion amongst others. A simulation based on an ideal hovercraft model verifies the performance of the proposed observer architecture. |
doi_str_mv | 10.1109/TAC.2022.3173926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2792135230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9772385</ieee_id><sourcerecordid>2792135230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c9e671a3ddc9facdfd9ee1b57ec0b64981b571fceda34376c2e8c4b889d381663</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC56352nwcy1KrUOnBeg7ZZBa22E2b7Bb9701p8TTz4L0Z3g-hR4JnhGD9spnXM4opnTEimabiCk1IVamSVpRdownGRJWaKnGL7lLaZik4JxNULw5jd7Sxs_1QrJsE8QgxFW2IxSe40PtyHT1k8ZsG2KUi9MWHHWL3U6w6KJYxjPt0j25a-53g4TKn6Ot1sanfytV6-V7PV6WjnA-l0yAkscx7p1vrfOs1AGkqCQ43gmt12knrwFvGmRSOgnK8UUp7pogQbIqez3f3MRxGSIPZhjH2-aWhUlPCclWcXfjscjGkFKE1-9jtbPw1BJsTKpNRmRMqc0GVI0_nSAcA_3YtJWWqYn-ceWTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792135230</pqid></control><display><type>article</type><title>Equivariant Observers for Second-Order Systems on Matrix Lie Groups</title><source>IEEE Electronic Library (IEL)</source><creator>Ng, Yonhon ; van Goor, Pieter ; Hamel, Tarek ; Mahony, Robert</creator><creatorcontrib>Ng, Yonhon ; van Goor, Pieter ; Hamel, Tarek ; Mahony, Robert</creatorcontrib><description>This article develops an equivariant symmetry for second-order kinematic systems on matrix Lie groups and uses this symmetry for observer design. The state of a second-order kinematic system on a matrix Lie group is naturally posed on the tangent bundle of the group with the inputs lying in the tangent of the tangent bundle known as the double-tangent bundle. We provide a simple parameterization of both the tangent bundle state-space and the input space (the fiber space of the double-tangent bundle) and then introduce a semidirect product group and group actions onto both the state and input spaces. We show that with the proposed group actions, the second-order kinematics are equivariant. An equivariant lift of the kinematics onto the symmetry group is derived and used to design nonlinear observers on the lifted state-space using nonlinear constructive design techniques. The observer design is specialized to kinematics on groups that themselves admit a semidirect product structure and include applications in rigid-body motion amongst others. A simulation based on an ideal hovercraft model verifies the performance of the proposed observer architecture.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2022.3173926</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Algebraic/geometric methods ; Angular velocity ; Control theory ; estimation ; Ground effect machines ; Kinematics ; Lie groups ; Mathematical analysis ; Observers ; output feedback and observers ; Parameterization ; Rigid-body dynamics ; Robots ; Symmetry ; Velocity measurement</subject><ispartof>IEEE transactions on automatic control, 2023-04, Vol.68 (4), p.2468-2474</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-c9e671a3ddc9facdfd9ee1b57ec0b64981b571fceda34376c2e8c4b889d381663</cites><orcidid>0000-0002-7779-1264 ; 0000-0002-7803-2868 ; 0000-0003-4391-7014 ; 0000-0002-7764-298X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9772385$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9772385$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ng, Yonhon</creatorcontrib><creatorcontrib>van Goor, Pieter</creatorcontrib><creatorcontrib>Hamel, Tarek</creatorcontrib><creatorcontrib>Mahony, Robert</creatorcontrib><title>Equivariant Observers for Second-Order Systems on Matrix Lie Groups</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article develops an equivariant symmetry for second-order kinematic systems on matrix Lie groups and uses this symmetry for observer design. The state of a second-order kinematic system on a matrix Lie group is naturally posed on the tangent bundle of the group with the inputs lying in the tangent of the tangent bundle known as the double-tangent bundle. We provide a simple parameterization of both the tangent bundle state-space and the input space (the fiber space of the double-tangent bundle) and then introduce a semidirect product group and group actions onto both the state and input spaces. We show that with the proposed group actions, the second-order kinematics are equivariant. An equivariant lift of the kinematics onto the symmetry group is derived and used to design nonlinear observers on the lifted state-space using nonlinear constructive design techniques. The observer design is specialized to kinematics on groups that themselves admit a semidirect product structure and include applications in rigid-body motion amongst others. A simulation based on an ideal hovercraft model verifies the performance of the proposed observer architecture.</description><subject>Algebra</subject><subject>Algebraic/geometric methods</subject><subject>Angular velocity</subject><subject>Control theory</subject><subject>estimation</subject><subject>Ground effect machines</subject><subject>Kinematics</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Observers</subject><subject>output feedback and observers</subject><subject>Parameterization</subject><subject>Rigid-body dynamics</subject><subject>Robots</subject><subject>Symmetry</subject><subject>Velocity measurement</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC56352nwcy1KrUOnBeg7ZZBa22E2b7Bb9701p8TTz4L0Z3g-hR4JnhGD9spnXM4opnTEimabiCk1IVamSVpRdownGRJWaKnGL7lLaZik4JxNULw5jd7Sxs_1QrJsE8QgxFW2IxSe40PtyHT1k8ZsG2KUi9MWHHWL3U6w6KJYxjPt0j25a-53g4TKn6Ot1sanfytV6-V7PV6WjnA-l0yAkscx7p1vrfOs1AGkqCQ43gmt12knrwFvGmRSOgnK8UUp7pogQbIqez3f3MRxGSIPZhjH2-aWhUlPCclWcXfjscjGkFKE1-9jtbPw1BJsTKpNRmRMqc0GVI0_nSAcA_3YtJWWqYn-ceWTI</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Ng, Yonhon</creator><creator>van Goor, Pieter</creator><creator>Hamel, Tarek</creator><creator>Mahony, Robert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7779-1264</orcidid><orcidid>https://orcid.org/0000-0002-7803-2868</orcidid><orcidid>https://orcid.org/0000-0003-4391-7014</orcidid><orcidid>https://orcid.org/0000-0002-7764-298X</orcidid></search><sort><creationdate>20230401</creationdate><title>Equivariant Observers for Second-Order Systems on Matrix Lie Groups</title><author>Ng, Yonhon ; van Goor, Pieter ; Hamel, Tarek ; Mahony, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c9e671a3ddc9facdfd9ee1b57ec0b64981b571fceda34376c2e8c4b889d381663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algebraic/geometric methods</topic><topic>Angular velocity</topic><topic>Control theory</topic><topic>estimation</topic><topic>Ground effect machines</topic><topic>Kinematics</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Observers</topic><topic>output feedback and observers</topic><topic>Parameterization</topic><topic>Rigid-body dynamics</topic><topic>Robots</topic><topic>Symmetry</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Yonhon</creatorcontrib><creatorcontrib>van Goor, Pieter</creatorcontrib><creatorcontrib>Hamel, Tarek</creatorcontrib><creatorcontrib>Mahony, Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ng, Yonhon</au><au>van Goor, Pieter</au><au>Hamel, Tarek</au><au>Mahony, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivariant Observers for Second-Order Systems on Matrix Lie Groups</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>68</volume><issue>4</issue><spage>2468</spage><epage>2474</epage><pages>2468-2474</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article develops an equivariant symmetry for second-order kinematic systems on matrix Lie groups and uses this symmetry for observer design. The state of a second-order kinematic system on a matrix Lie group is naturally posed on the tangent bundle of the group with the inputs lying in the tangent of the tangent bundle known as the double-tangent bundle. We provide a simple parameterization of both the tangent bundle state-space and the input space (the fiber space of the double-tangent bundle) and then introduce a semidirect product group and group actions onto both the state and input spaces. We show that with the proposed group actions, the second-order kinematics are equivariant. An equivariant lift of the kinematics onto the symmetry group is derived and used to design nonlinear observers on the lifted state-space using nonlinear constructive design techniques. The observer design is specialized to kinematics on groups that themselves admit a semidirect product structure and include applications in rigid-body motion amongst others. A simulation based on an ideal hovercraft model verifies the performance of the proposed observer architecture.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2022.3173926</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7779-1264</orcidid><orcidid>https://orcid.org/0000-0002-7803-2868</orcidid><orcidid>https://orcid.org/0000-0003-4391-7014</orcidid><orcidid>https://orcid.org/0000-0002-7764-298X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2023-04, Vol.68 (4), p.2468-2474 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_2792135230 |
source | IEEE Electronic Library (IEL) |
subjects | Algebra Algebraic/geometric methods Angular velocity Control theory estimation Ground effect machines Kinematics Lie groups Mathematical analysis Observers output feedback and observers Parameterization Rigid-body dynamics Robots Symmetry Velocity measurement |
title | Equivariant Observers for Second-Order Systems on Matrix Lie Groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A56%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivariant%20Observers%20for%20Second-Order%20Systems%20on%20Matrix%20Lie%20Groups&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ng,%20Yonhon&rft.date=2023-04-01&rft.volume=68&rft.issue=4&rft.spage=2468&rft.epage=2474&rft.pages=2468-2474&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2022.3173926&rft_dat=%3Cproquest_RIE%3E2792135230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792135230&rft_id=info:pmid/&rft_ieee_id=9772385&rfr_iscdi=true |