Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2023-04, Vol.24 (4), p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 24 |
creator | Huo, Guangyu Zhang, Yong Wang, Boyue Gao, Junbin Hu, Yongli Yin, Baocai |
description | Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method. |
doi_str_mv | 10.1109/TITS.2023.3234512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2792132481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10012451</ieee_id><sourcerecordid>2792132481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-c5ab0c4a174e0ef5ad5fbafe18463500290b6156ddac06a0114a75dc16d2ff623</originalsourceid><addsrcrecordid>eNpNUEtLw0AQXkTBWv0BgoeA59SZzW7aHKXYBxQ9NJ7DdLNrU9Ns3E0t_ns3tIKnme81DB9j9wgjRMie8mW-HnHgySjhiZDIL9gApZzEAJhe9jsXcQYSrtmN97vABhMOWLOotCOntpWiOlq31FU2zvW-tS7guaN2G01t823rQ1CawL3q7mjdp4-oKaPcUeONdXvt_oQowJ43plLRrLbHaGadVuS7qvm4ZVeGaq_vznPI3mcv-XQRr97my-nzKlY8E12sJG1ACcKx0KCNpFKaDRmNE5EmEoBnsElRpmVJClICREFjWSpMS25MypMhezzdbZ39OmjfFTt7cOF9X_BxxjHhYoLBhSeXctZ7p03RumpP7qdAKPpai77Woq-1ONcaMg-nTKW1_ucH5EFPfgHlInWt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792132481</pqid></control><display><type>article</type><title>Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting</title><source>IEEE Electronic Library (IEL)</source><creator>Huo, Guangyu ; Zhang, Yong ; Wang, Boyue ; Gao, Junbin ; Hu, Yongli ; Yin, Baocai</creator><creatorcontrib>Huo, Guangyu ; Zhang, Yong ; Wang, Boyue ; Gao, Junbin ; Hu, Yongli ; Yin, Baocai</creatorcontrib><description>Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3234512</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Convolution ; Forecasting ; Graph convolutional networks ; Network topology ; Networks ; Predictive models ; Roads ; Smoothing ; Task analysis ; Topology ; traffic data forecasting ; Traffic flow ; transformer ; Transformers</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-04, Vol.24 (4), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-c5ab0c4a174e0ef5ad5fbafe18463500290b6156ddac06a0114a75dc16d2ff623</citedby><cites>FETCH-LOGICAL-c294t-c5ab0c4a174e0ef5ad5fbafe18463500290b6156ddac06a0114a75dc16d2ff623</cites><orcidid>0000-0003-3121-1823 ; 0000-0001-9803-0256 ; 0000-0001-6650-6790 ; 0000-0003-0440-438X ; 0000-0002-2677-8342 ; 0000-0002-5759-1185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10012451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10012451$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huo, Guangyu</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><title>Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Forecasting</subject><subject>Graph convolutional networks</subject><subject>Network topology</subject><subject>Networks</subject><subject>Predictive models</subject><subject>Roads</subject><subject>Smoothing</subject><subject>Task analysis</subject><subject>Topology</subject><subject>traffic data forecasting</subject><subject>Traffic flow</subject><subject>transformer</subject><subject>Transformers</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUEtLw0AQXkTBWv0BgoeA59SZzW7aHKXYBxQ9NJ7DdLNrU9Ns3E0t_ns3tIKnme81DB9j9wgjRMie8mW-HnHgySjhiZDIL9gApZzEAJhe9jsXcQYSrtmN97vABhMOWLOotCOntpWiOlq31FU2zvW-tS7guaN2G01t823rQ1CawL3q7mjdp4-oKaPcUeONdXvt_oQowJ43plLRrLbHaGadVuS7qvm4ZVeGaq_vznPI3mcv-XQRr97my-nzKlY8E12sJG1ACcKx0KCNpFKaDRmNE5EmEoBnsElRpmVJClICREFjWSpMS25MypMhezzdbZ39OmjfFTt7cOF9X_BxxjHhYoLBhSeXctZ7p03RumpP7qdAKPpai77Woq-1ONcaMg-nTKW1_ucH5EFPfgHlInWt</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Huo, Guangyu</creator><creator>Zhang, Yong</creator><creator>Wang, Boyue</creator><creator>Gao, Junbin</creator><creator>Hu, Yongli</creator><creator>Yin, Baocai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0001-6650-6790</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0002-5759-1185</orcidid></search><sort><creationdate>20230401</creationdate><title>Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting</title><author>Huo, Guangyu ; Zhang, Yong ; Wang, Boyue ; Gao, Junbin ; Hu, Yongli ; Yin, Baocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-c5ab0c4a174e0ef5ad5fbafe18463500290b6156ddac06a0114a75dc16d2ff623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Forecasting</topic><topic>Graph convolutional networks</topic><topic>Network topology</topic><topic>Networks</topic><topic>Predictive models</topic><topic>Roads</topic><topic>Smoothing</topic><topic>Task analysis</topic><topic>Topology</topic><topic>traffic data forecasting</topic><topic>Traffic flow</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Guangyu</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huo, Guangyu</au><au>Zhang, Yong</au><au>Wang, Boyue</au><au>Gao, Junbin</au><au>Hu, Yongli</au><au>Yin, Baocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3234512</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0001-6650-6790</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0002-5759-1185</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2023-04, Vol.24 (4), p.1-13 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2792132481 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Convolution Forecasting Graph convolutional networks Network topology Networks Predictive models Roads Smoothing Task analysis Topology traffic data forecasting Traffic flow transformer Transformers |
title | Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Spatio-Temporal%20Graph%20Convolutional%20Networks%20and%20Transformer%20Network%20for%20Traffic%20Flow%20Forecasting&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Huo,%20Guangyu&rft.date=2023-04-01&rft.volume=24&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3234512&rft_dat=%3Cproquest_RIE%3E2792132481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792132481&rft_id=info:pmid/&rft_ieee_id=10012451&rfr_iscdi=true |