Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting

Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2023-04, Vol.24 (4), p.1-13
Hauptverfasser: Huo, Guangyu, Zhang, Yong, Wang, Boyue, Gao, Junbin, Hu, Yongli, Yin, Baocai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 4
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume 24
creator Huo, Guangyu
Zhang, Yong
Wang, Boyue
Gao, Junbin
Hu, Yongli
Yin, Baocai
description Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method.
doi_str_mv 10.1109/TITS.2023.3234512
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2792132481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10012451</ieee_id><sourcerecordid>2792132481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-c5ab0c4a174e0ef5ad5fbafe18463500290b6156ddac06a0114a75dc16d2ff623</originalsourceid><addsrcrecordid>eNpNUEtLw0AQXkTBWv0BgoeA59SZzW7aHKXYBxQ9NJ7DdLNrU9Ns3E0t_ns3tIKnme81DB9j9wgjRMie8mW-HnHgySjhiZDIL9gApZzEAJhe9jsXcQYSrtmN97vABhMOWLOotCOntpWiOlq31FU2zvW-tS7guaN2G01t823rQ1CawL3q7mjdp4-oKaPcUeONdXvt_oQowJ43plLRrLbHaGadVuS7qvm4ZVeGaq_vznPI3mcv-XQRr97my-nzKlY8E12sJG1ACcKx0KCNpFKaDRmNE5EmEoBnsElRpmVJClICREFjWSpMS25MypMhezzdbZ39OmjfFTt7cOF9X_BxxjHhYoLBhSeXctZ7p03RumpP7qdAKPpai77Woq-1ONcaMg-nTKW1_ucH5EFPfgHlInWt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792132481</pqid></control><display><type>article</type><title>Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting</title><source>IEEE Electronic Library (IEL)</source><creator>Huo, Guangyu ; Zhang, Yong ; Wang, Boyue ; Gao, Junbin ; Hu, Yongli ; Yin, Baocai</creator><creatorcontrib>Huo, Guangyu ; Zhang, Yong ; Wang, Boyue ; Gao, Junbin ; Hu, Yongli ; Yin, Baocai</creatorcontrib><description>Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3234512</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Convolution ; Forecasting ; Graph convolutional networks ; Network topology ; Networks ; Predictive models ; Roads ; Smoothing ; Task analysis ; Topology ; traffic data forecasting ; Traffic flow ; transformer ; Transformers</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-04, Vol.24 (4), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-c5ab0c4a174e0ef5ad5fbafe18463500290b6156ddac06a0114a75dc16d2ff623</citedby><cites>FETCH-LOGICAL-c294t-c5ab0c4a174e0ef5ad5fbafe18463500290b6156ddac06a0114a75dc16d2ff623</cites><orcidid>0000-0003-3121-1823 ; 0000-0001-9803-0256 ; 0000-0001-6650-6790 ; 0000-0003-0440-438X ; 0000-0002-2677-8342 ; 0000-0002-5759-1185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10012451$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10012451$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huo, Guangyu</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><title>Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Forecasting</subject><subject>Graph convolutional networks</subject><subject>Network topology</subject><subject>Networks</subject><subject>Predictive models</subject><subject>Roads</subject><subject>Smoothing</subject><subject>Task analysis</subject><subject>Topology</subject><subject>traffic data forecasting</subject><subject>Traffic flow</subject><subject>transformer</subject><subject>Transformers</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUEtLw0AQXkTBWv0BgoeA59SZzW7aHKXYBxQ9NJ7DdLNrU9Ns3E0t_ns3tIKnme81DB9j9wgjRMie8mW-HnHgySjhiZDIL9gApZzEAJhe9jsXcQYSrtmN97vABhMOWLOotCOntpWiOlq31FU2zvW-tS7guaN2G01t823rQ1CawL3q7mjdp4-oKaPcUeONdXvt_oQowJ43plLRrLbHaGadVuS7qvm4ZVeGaq_vznPI3mcv-XQRr97my-nzKlY8E12sJG1ACcKx0KCNpFKaDRmNE5EmEoBnsElRpmVJClICREFjWSpMS25MypMhezzdbZ39OmjfFTt7cOF9X_BxxjHhYoLBhSeXctZ7p03RumpP7qdAKPpai77Woq-1ONcaMg-nTKW1_ucH5EFPfgHlInWt</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Huo, Guangyu</creator><creator>Zhang, Yong</creator><creator>Wang, Boyue</creator><creator>Gao, Junbin</creator><creator>Hu, Yongli</creator><creator>Yin, Baocai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0001-6650-6790</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0002-5759-1185</orcidid></search><sort><creationdate>20230401</creationdate><title>Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting</title><author>Huo, Guangyu ; Zhang, Yong ; Wang, Boyue ; Gao, Junbin ; Hu, Yongli ; Yin, Baocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-c5ab0c4a174e0ef5ad5fbafe18463500290b6156ddac06a0114a75dc16d2ff623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Forecasting</topic><topic>Graph convolutional networks</topic><topic>Network topology</topic><topic>Networks</topic><topic>Predictive models</topic><topic>Roads</topic><topic>Smoothing</topic><topic>Task analysis</topic><topic>Topology</topic><topic>traffic data forecasting</topic><topic>Traffic flow</topic><topic>transformer</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Guangyu</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Wang, Boyue</creatorcontrib><creatorcontrib>Gao, Junbin</creatorcontrib><creatorcontrib>Hu, Yongli</creatorcontrib><creatorcontrib>Yin, Baocai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huo, Guangyu</au><au>Zhang, Yong</au><au>Wang, Boyue</au><au>Gao, Junbin</au><au>Hu, Yongli</au><au>Yin, Baocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>24</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Graph convolutional networks (GCN) have been applied in the traffic flow forecasting tasks with the graph capability in describing the irregular topology structures of road networks. However, GCN based traffic flow forecasting methods often fail to simultaneously capture the short-term and long-term temporal relations carried by the traffic flow data, and also suffer the over-smoothing problem. To overcome the problems, we propose a hierarchical traffic flow forecasting network by merging newly designed the long-term temporal Transformer network (LTT) and the spatio-temporal graph convolutional networks (STGC). Specifically, LTT aims to learn the long-term temporal relations among the traffic flow data, while the STGC module aims to capture the short-term temporal relations and spatial relations among the traffic flow data, respectively, via cascading between the one-dimensional convolution and the graph convolution. In addition, an attention fusion mechanism is proposed to combine the long-term with the short-term temporal relations as the input of the graph convolution layer in STGC, in order to mitigate the over-smoothing problem of GCN. Experimental results on three public traffic flow datasets prove the effectiveness and robustness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3234512</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3121-1823</orcidid><orcidid>https://orcid.org/0000-0001-9803-0256</orcidid><orcidid>https://orcid.org/0000-0001-6650-6790</orcidid><orcidid>https://orcid.org/0000-0003-0440-438X</orcidid><orcidid>https://orcid.org/0000-0002-2677-8342</orcidid><orcidid>https://orcid.org/0000-0002-5759-1185</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2023-04, Vol.24 (4), p.1-13
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2792132481
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Convolution
Forecasting
Graph convolutional networks
Network topology
Networks
Predictive models
Roads
Smoothing
Task analysis
Topology
traffic data forecasting
Traffic flow
transformer
Transformers
title Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Spatio-Temporal%20Graph%20Convolutional%20Networks%20and%20Transformer%20Network%20for%20Traffic%20Flow%20Forecasting&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Huo,%20Guangyu&rft.date=2023-04-01&rft.volume=24&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3234512&rft_dat=%3Cproquest_RIE%3E2792132481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2792132481&rft_id=info:pmid/&rft_ieee_id=10012451&rfr_iscdi=true