Wellposedness of Second Order Evolution Equations

In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2023-04, Vol.17 (3), Article 42
Hauptverfasser: Poblete, Felipe, Poblete, Verónica, Pozo, Juan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Complex analysis and operator theory
container_volume 17
creator Poblete, Felipe
Poblete, Verónica
Pozo, Juan C.
description In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural solution space. The second one is obtained by means of Fourier multipliers over weighted Sobolev spaces on the real line. Further, using an operator-valued version of Miklhin Fourier multipliers theorem, we exhibit some examples of operators for which the mild wellposedness is satisfied. Our results extend some previous results about abstract second order evolution equations.
doi_str_mv 10.1007/s11785-023-01345-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2791991717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791991717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9fa735d982efed28ec8d71cd36bb18997678d5f8e10b65f963305107900d2da53</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC6-g5yeS2lGG8wMAsVFyGtklkhtp0klbw7e1Y0Z2r8y_-y-Ej5BLhGgHUTUZUWlBgnALyhaDmiMxQSqSaSXb8q8XilJzlvAOQoIyZEXz1TdPF7F3rcy5iKJ58HVtXbJLzqVh9xGbot7EtVvuhPIh8Tk5C2WR_8XPn5OVu9bx8oOvN_ePydk1rpqCnJpSKC2c088E7pn2tncLacVlVqI1RUmkngvYIlRTBSM5B4PgUgGOuFHxOrqbeLsX94HNvd3FI7ThpmTJoDCpUo4tNrjrFnJMPtkvb9zJ9WgR7QGMnNHZEY7_RWDOG-BTKo7l98-mv-p_UF4zHZWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791991717</pqid></control><display><type>article</type><title>Wellposedness of Second Order Evolution Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Poblete, Felipe ; Poblete, Verónica ; Pozo, Juan C.</creator><creatorcontrib>Poblete, Felipe ; Poblete, Verónica ; Pozo, Juan C.</creatorcontrib><description>In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural solution space. The second one is obtained by means of Fourier multipliers over weighted Sobolev spaces on the real line. Further, using an operator-valued version of Miklhin Fourier multipliers theorem, we exhibit some examples of operators for which the mild wellposedness is satisfied. Our results extend some previous results about abstract second order evolution equations.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-023-01345-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Differential equations ; Evolution ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Multipliers ; Operator Theory ; Operators (mathematics) ; Sobolev space ; Solution space ; Spectral Theory and Operators in Mathematical Physics</subject><ispartof>Complex analysis and operator theory, 2023-04, Vol.17 (3), Article 42</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9fa735d982efed28ec8d71cd36bb18997678d5f8e10b65f963305107900d2da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-023-01345-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-023-01345-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Poblete, Felipe</creatorcontrib><creatorcontrib>Poblete, Verónica</creatorcontrib><creatorcontrib>Pozo, Juan C.</creatorcontrib><title>Wellposedness of Second Order Evolution Equations</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural solution space. The second one is obtained by means of Fourier multipliers over weighted Sobolev spaces on the real line. Further, using an operator-valued version of Miklhin Fourier multipliers theorem, we exhibit some examples of operators for which the mild wellposedness is satisfied. Our results extend some previous results about abstract second order evolution equations.</description><subject>Analysis</subject><subject>Differential equations</subject><subject>Evolution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Sobolev space</subject><subject>Solution space</subject><subject>Spectral Theory and Operators in Mathematical Physics</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC6-g5yeS2lGG8wMAsVFyGtklkhtp0klbw7e1Y0Z2r8y_-y-Ej5BLhGgHUTUZUWlBgnALyhaDmiMxQSqSaSXb8q8XilJzlvAOQoIyZEXz1TdPF7F3rcy5iKJ58HVtXbJLzqVh9xGbot7EtVvuhPIh8Tk5C2WR_8XPn5OVu9bx8oOvN_ePydk1rpqCnJpSKC2c088E7pn2tncLacVlVqI1RUmkngvYIlRTBSM5B4PgUgGOuFHxOrqbeLsX94HNvd3FI7ThpmTJoDCpUo4tNrjrFnJMPtkvb9zJ9WgR7QGMnNHZEY7_RWDOG-BTKo7l98-mv-p_UF4zHZWU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Poblete, Felipe</creator><creator>Poblete, Verónica</creator><creator>Pozo, Juan C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Wellposedness of Second Order Evolution Equations</title><author>Poblete, Felipe ; Poblete, Verónica ; Pozo, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9fa735d982efed28ec8d71cd36bb18997678d5f8e10b65f963305107900d2da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Differential equations</topic><topic>Evolution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Sobolev space</topic><topic>Solution space</topic><topic>Spectral Theory and Operators in Mathematical Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poblete, Felipe</creatorcontrib><creatorcontrib>Poblete, Verónica</creatorcontrib><creatorcontrib>Pozo, Juan C.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poblete, Felipe</au><au>Poblete, Verónica</au><au>Pozo, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wellposedness of Second Order Evolution Equations</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><artnum>42</artnum><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural solution space. The second one is obtained by means of Fourier multipliers over weighted Sobolev spaces on the real line. Further, using an operator-valued version of Miklhin Fourier multipliers theorem, we exhibit some examples of operators for which the mild wellposedness is satisfied. Our results extend some previous results about abstract second order evolution equations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-023-01345-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2023-04, Vol.17 (3), Article 42
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_2791991717
source SpringerLink Journals - AutoHoldings
subjects Analysis
Differential equations
Evolution
Mathematical analysis
Mathematics
Mathematics and Statistics
Multipliers
Operator Theory
Operators (mathematics)
Sobolev space
Solution space
Spectral Theory and Operators in Mathematical Physics
title Wellposedness of Second Order Evolution Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wellposedness%20of%20Second%20Order%20Evolution%20Equations&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Poblete,%20Felipe&rft.date=2023-04-01&rft.volume=17&rft.issue=3&rft.artnum=42&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-023-01345-9&rft_dat=%3Cproquest_cross%3E2791991717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791991717&rft_id=info:pmid/&rfr_iscdi=true