Wellposedness of Second Order Evolution Equations
In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural s...
Gespeichert in:
Veröffentlicht in: | Complex analysis and operator theory 2023-04, Vol.17 (3), Article 42 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Complex analysis and operator theory |
container_volume | 17 |
creator | Poblete, Felipe Poblete, Verónica Pozo, Juan C. |
description | In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural solution space. The second one is obtained by means of Fourier multipliers over weighted Sobolev spaces on the real line. Further, using an operator-valued version of Miklhin Fourier multipliers theorem, we exhibit some examples of operators for which the mild wellposedness is satisfied. Our results extend some previous results about abstract second order evolution equations. |
doi_str_mv | 10.1007/s11785-023-01345-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2791991717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791991717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9fa735d982efed28ec8d71cd36bb18997678d5f8e10b65f963305107900d2da53</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC6-g5yeS2lGG8wMAsVFyGtklkhtp0klbw7e1Y0Z2r8y_-y-Ej5BLhGgHUTUZUWlBgnALyhaDmiMxQSqSaSXb8q8XilJzlvAOQoIyZEXz1TdPF7F3rcy5iKJ58HVtXbJLzqVh9xGbot7EtVvuhPIh8Tk5C2WR_8XPn5OVu9bx8oOvN_ePydk1rpqCnJpSKC2c088E7pn2tncLacVlVqI1RUmkngvYIlRTBSM5B4PgUgGOuFHxOrqbeLsX94HNvd3FI7ThpmTJoDCpUo4tNrjrFnJMPtkvb9zJ9WgR7QGMnNHZEY7_RWDOG-BTKo7l98-mv-p_UF4zHZWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791991717</pqid></control><display><type>article</type><title>Wellposedness of Second Order Evolution Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Poblete, Felipe ; Poblete, Verónica ; Pozo, Juan C.</creator><creatorcontrib>Poblete, Felipe ; Poblete, Verónica ; Pozo, Juan C.</creatorcontrib><description>In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural solution space. The second one is obtained by means of Fourier multipliers over weighted Sobolev spaces on the real line. Further, using an operator-valued version of Miklhin Fourier multipliers theorem, we exhibit some examples of operators for which the mild wellposedness is satisfied. Our results extend some previous results about abstract second order evolution equations.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-023-01345-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Differential equations ; Evolution ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Multipliers ; Operator Theory ; Operators (mathematics) ; Sobolev space ; Solution space ; Spectral Theory and Operators in Mathematical Physics</subject><ispartof>Complex analysis and operator theory, 2023-04, Vol.17 (3), Article 42</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9fa735d982efed28ec8d71cd36bb18997678d5f8e10b65f963305107900d2da53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-023-01345-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-023-01345-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Poblete, Felipe</creatorcontrib><creatorcontrib>Poblete, Verónica</creatorcontrib><creatorcontrib>Pozo, Juan C.</creatorcontrib><title>Wellposedness of Second Order Evolution Equations</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural solution space. The second one is obtained by means of Fourier multipliers over weighted Sobolev spaces on the real line. Further, using an operator-valued version of Miklhin Fourier multipliers theorem, we exhibit some examples of operators for which the mild wellposedness is satisfied. Our results extend some previous results about abstract second order evolution equations.</description><subject>Analysis</subject><subject>Differential equations</subject><subject>Evolution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Sobolev space</subject><subject>Solution space</subject><subject>Spectral Theory and Operators in Mathematical Physics</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC6-g5yeS2lGG8wMAsVFyGtklkhtp0klbw7e1Y0Z2r8y_-y-Ej5BLhGgHUTUZUWlBgnALyhaDmiMxQSqSaSXb8q8XilJzlvAOQoIyZEXz1TdPF7F3rcy5iKJ58HVtXbJLzqVh9xGbot7EtVvuhPIh8Tk5C2WR_8XPn5OVu9bx8oOvN_ePydk1rpqCnJpSKC2c088E7pn2tncLacVlVqI1RUmkngvYIlRTBSM5B4PgUgGOuFHxOrqbeLsX94HNvd3FI7ThpmTJoDCpUo4tNrjrFnJMPtkvb9zJ9WgR7QGMnNHZEY7_RWDOG-BTKo7l98-mv-p_UF4zHZWU</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Poblete, Felipe</creator><creator>Poblete, Verónica</creator><creator>Pozo, Juan C.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Wellposedness of Second Order Evolution Equations</title><author>Poblete, Felipe ; Poblete, Verónica ; Pozo, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9fa735d982efed28ec8d71cd36bb18997678d5f8e10b65f963305107900d2da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Differential equations</topic><topic>Evolution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Sobolev space</topic><topic>Solution space</topic><topic>Spectral Theory and Operators in Mathematical Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poblete, Felipe</creatorcontrib><creatorcontrib>Poblete, Verónica</creatorcontrib><creatorcontrib>Pozo, Juan C.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poblete, Felipe</au><au>Poblete, Verónica</au><au>Pozo, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wellposedness of Second Order Evolution Equations</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><artnum>42</artnum><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural solution space. The second one is obtained by means of Fourier multipliers over weighted Sobolev spaces on the real line. Further, using an operator-valued version of Miklhin Fourier multipliers theorem, we exhibit some examples of operators for which the mild wellposedness is satisfied. Our results extend some previous results about abstract second order evolution equations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-023-01345-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8254 |
ispartof | Complex analysis and operator theory, 2023-04, Vol.17 (3), Article 42 |
issn | 1661-8254 1661-8262 |
language | eng |
recordid | cdi_proquest_journals_2791991717 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Differential equations Evolution Mathematical analysis Mathematics Mathematics and Statistics Multipliers Operator Theory Operators (mathematics) Sobolev space Solution space Spectral Theory and Operators in Mathematical Physics |
title | Wellposedness of Second Order Evolution Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wellposedness%20of%20Second%20Order%20Evolution%20Equations&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Poblete,%20Felipe&rft.date=2023-04-01&rft.volume=17&rft.issue=3&rft.artnum=42&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-023-01345-9&rft_dat=%3Cproquest_cross%3E2791991717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791991717&rft_id=info:pmid/&rfr_iscdi=true |