Arithmetic Properties of Values at Polyadic Liouville Points of Euler-Type Series with Polyadic Liouville Parameter

We study the infinite linear independence of polyadic numbers , f 1 (λ) = where λ is a polyadic Liouville number. Here, denotes the Pochhammer symbol, i.e., and for . The considered series converge in any field . The results presented extends the author’s previous results concerning the arithmetic p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2022-12, Vol.106 (Suppl 2), p.S150-S153
1. Verfasser: Chirskii, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S153
container_issue Suppl 2
container_start_page S150
container_title Doklady. Mathematics
container_volume 106
creator Chirskii, V. G.
description We study the infinite linear independence of polyadic numbers , f 1 (λ) = where λ is a polyadic Liouville number. Here, denotes the Pochhammer symbol, i.e., and for . The considered series converge in any field . The results presented extends the author’s previous results concerning the arithmetic properties of the polyadic numbers . The values of generalized hypergeometric series have been extensively studied. If the series parameters are rational numbers, then the series belong to the class of E -functions (if these series are entire functions), to the class of G -functions (if they have a finite nonzero radius of convergence), or to the class of F -series (in the case of a zero radius of convergence in the field of complex numbers, but they converge in the fields of p -adic numbers). In all these cases, the Siegel–Shidlovskii method and its generalizations are applicable. If the parameters of the series contain algebraic irrational numbers, then the study of their arithmetic properties is based on Hermite–Padé approximations. In the considered case, the parameter is a transcendental number. Note that earlier A.I. Galochkin proved the algebraic independence of the values of E -functions at points that are real Liouville numbers. We also mention E.Yu. Yudenkova’s papers (submitted for publication) on the values of F -series at polyadic Liouville points. It should be emphasized that this paper deals with the values, at polyadic transcendental points, of hypergeometric series with a parameter that is a polyadic transcendental (Liouville) number.
doi_str_mv 10.1134/S1064562422700284
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2791991631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791991631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5e93f4e920ad1b55547624b4ee8899551aa33761ad540b2d5d59693ea16874313</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC59VMvnZzLKV-QEGh1euSdmc1ZdusSVbpvzdtBQ_qKUPmed5JhpBLoNcAXNzMgCohFROMFZSyUhyRAUgOeckVO051aue7_ik5C2FFqZCM0gEJI2_j2xqjXWZP3nXoo8WQuSZ7MW2fKhOzJ9duTZ2AqXX9h21bTFd2E_fYpG_R5_Nth9kM_c79TIF_OsabNAj9OTlpTBvw4vsckufbyXx8n08f7x7Go2m-ZKqMuUTNG4GaUVPDQkopivT-hUAsS62lBGM4LxSYWgq6YLWspVaaowFVFoIDH5KrQ27n3Xv6S6xWrvebNLJihQatQe0pOFBL70Lw2FSdt2vjtxXQarfb6tduk8MOTkjs5hX9T_L_0hcFhnre</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791991631</pqid></control><display><type>article</type><title>Arithmetic Properties of Values at Polyadic Liouville Points of Euler-Type Series with Polyadic Liouville Parameter</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chirskii, V. G.</creator><creatorcontrib>Chirskii, V. G.</creatorcontrib><description>We study the infinite linear independence of polyadic numbers , f 1 (λ) = where λ is a polyadic Liouville number. Here, denotes the Pochhammer symbol, i.e., and for . The considered series converge in any field . The results presented extends the author’s previous results concerning the arithmetic properties of the polyadic numbers . The values of generalized hypergeometric series have been extensively studied. If the series parameters are rational numbers, then the series belong to the class of E -functions (if these series are entire functions), to the class of G -functions (if they have a finite nonzero radius of convergence), or to the class of F -series (in the case of a zero radius of convergence in the field of complex numbers, but they converge in the fields of p -adic numbers). In all these cases, the Siegel–Shidlovskii method and its generalizations are applicable. If the parameters of the series contain algebraic irrational numbers, then the study of their arithmetic properties is based on Hermite–Padé approximations. In the considered case, the parameter is a transcendental number. Note that earlier A.I. Galochkin proved the algebraic independence of the values of E -functions at points that are real Liouville numbers. We also mention E.Yu. Yudenkova’s papers (submitted for publication) on the values of F -series at polyadic Liouville points. It should be emphasized that this paper deals with the values, at polyadic transcendental points, of hypergeometric series with a parameter that is a polyadic transcendental (Liouville) number.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562422700284</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Arithmetic ; Complex numbers ; Convergence ; Entire functions ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Parameters</subject><ispartof>Doklady. Mathematics, 2022-12, Vol.106 (Suppl 2), p.S150-S153</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1064-5624, Doklady Mathematics, 2022, Vol. 106, Suppl. 2, pp. S150–S153. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2021, published in Chebyshevskii Sbornik, 2021, Vol. 22, No. 2, pp. 304–312.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5e93f4e920ad1b55547624b4ee8899551aa33761ad540b2d5d59693ea16874313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562422700284$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562422700284$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chirskii, V. G.</creatorcontrib><title>Arithmetic Properties of Values at Polyadic Liouville Points of Euler-Type Series with Polyadic Liouville Parameter</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>We study the infinite linear independence of polyadic numbers , f 1 (λ) = where λ is a polyadic Liouville number. Here, denotes the Pochhammer symbol, i.e., and for . The considered series converge in any field . The results presented extends the author’s previous results concerning the arithmetic properties of the polyadic numbers . The values of generalized hypergeometric series have been extensively studied. If the series parameters are rational numbers, then the series belong to the class of E -functions (if these series are entire functions), to the class of G -functions (if they have a finite nonzero radius of convergence), or to the class of F -series (in the case of a zero radius of convergence in the field of complex numbers, but they converge in the fields of p -adic numbers). In all these cases, the Siegel–Shidlovskii method and its generalizations are applicable. If the parameters of the series contain algebraic irrational numbers, then the study of their arithmetic properties is based on Hermite–Padé approximations. In the considered case, the parameter is a transcendental number. Note that earlier A.I. Galochkin proved the algebraic independence of the values of E -functions at points that are real Liouville numbers. We also mention E.Yu. Yudenkova’s papers (submitted for publication) on the values of F -series at polyadic Liouville points. It should be emphasized that this paper deals with the values, at polyadic transcendental points, of hypergeometric series with a parameter that is a polyadic transcendental (Liouville) number.</description><subject>Algebra</subject><subject>Arithmetic</subject><subject>Complex numbers</subject><subject>Convergence</subject><subject>Entire functions</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameters</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC59VMvnZzLKV-QEGh1euSdmc1ZdusSVbpvzdtBQ_qKUPmed5JhpBLoNcAXNzMgCohFROMFZSyUhyRAUgOeckVO051aue7_ik5C2FFqZCM0gEJI2_j2xqjXWZP3nXoo8WQuSZ7MW2fKhOzJ9duTZ2AqXX9h21bTFd2E_fYpG_R5_Nth9kM_c79TIF_OsabNAj9OTlpTBvw4vsckufbyXx8n08f7x7Go2m-ZKqMuUTNG4GaUVPDQkopivT-hUAsS62lBGM4LxSYWgq6YLWspVaaowFVFoIDH5KrQ27n3Xv6S6xWrvebNLJihQatQe0pOFBL70Lw2FSdt2vjtxXQarfb6tduk8MOTkjs5hX9T_L_0hcFhnre</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chirskii, V. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Arithmetic Properties of Values at Polyadic Liouville Points of Euler-Type Series with Polyadic Liouville Parameter</title><author>Chirskii, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5e93f4e920ad1b55547624b4ee8899551aa33761ad540b2d5d59693ea16874313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Arithmetic</topic><topic>Complex numbers</topic><topic>Convergence</topic><topic>Entire functions</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chirskii, V. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chirskii, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arithmetic Properties of Values at Polyadic Liouville Points of Euler-Type Series with Polyadic Liouville Parameter</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>106</volume><issue>Suppl 2</issue><spage>S150</spage><epage>S153</epage><pages>S150-S153</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>We study the infinite linear independence of polyadic numbers , f 1 (λ) = where λ is a polyadic Liouville number. Here, denotes the Pochhammer symbol, i.e., and for . The considered series converge in any field . The results presented extends the author’s previous results concerning the arithmetic properties of the polyadic numbers . The values of generalized hypergeometric series have been extensively studied. If the series parameters are rational numbers, then the series belong to the class of E -functions (if these series are entire functions), to the class of G -functions (if they have a finite nonzero radius of convergence), or to the class of F -series (in the case of a zero radius of convergence in the field of complex numbers, but they converge in the fields of p -adic numbers). In all these cases, the Siegel–Shidlovskii method and its generalizations are applicable. If the parameters of the series contain algebraic irrational numbers, then the study of their arithmetic properties is based on Hermite–Padé approximations. In the considered case, the parameter is a transcendental number. Note that earlier A.I. Galochkin proved the algebraic independence of the values of E -functions at points that are real Liouville numbers. We also mention E.Yu. Yudenkova’s papers (submitted for publication) on the values of F -series at polyadic Liouville points. It should be emphasized that this paper deals with the values, at polyadic transcendental points, of hypergeometric series with a parameter that is a polyadic transcendental (Liouville) number.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562422700284</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2022-12, Vol.106 (Suppl 2), p.S150-S153
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_2791991631
source SpringerLink Journals - AutoHoldings
subjects Algebra
Arithmetic
Complex numbers
Convergence
Entire functions
Mathematical analysis
Mathematics
Mathematics and Statistics
Parameters
title Arithmetic Properties of Values at Polyadic Liouville Points of Euler-Type Series with Polyadic Liouville Parameter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arithmetic%20Properties%20of%20Values%20at%20Polyadic%20Liouville%20Points%20of%20Euler-Type%20Series%20with%20Polyadic%20Liouville%20Parameter&rft.jtitle=Doklady.%20Mathematics&rft.au=Chirskii,%20V.%20G.&rft.date=2022-12-01&rft.volume=106&rft.issue=Suppl%202&rft.spage=S150&rft.epage=S153&rft.pages=S150-S153&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562422700284&rft_dat=%3Cproquest_cross%3E2791991631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791991631&rft_id=info:pmid/&rfr_iscdi=true