Arithmetic Properties of Polyadic Integers

Arithmetic properties of series of the form with are studied. The concept of infinite algebraic independence of polyadic numbers is discussed. A theorem is proved concerning the infinite algebraic independence of polyadic numbers of the class that are connected by a system of linear differential equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2022-12, Vol.106 (Suppl 2), p.S142-S146
1. Verfasser: Chirskii, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S146
container_issue Suppl 2
container_start_page S142
container_title Doklady. Mathematics
container_volume 106
creator Chirskii, V. G.
description Arithmetic properties of series of the form with are studied. The concept of infinite algebraic independence of polyadic numbers is discussed. A theorem is proved concerning the infinite algebraic independence of polyadic numbers of the class that are connected by a system of linear differential equations of a certain type.
doi_str_mv 10.1134/S1064562422700326
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2791989891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791989891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-6457fc17ff2ef182c1fc33ec953357b9eaba2d323e767cddab14fb809bb726a13</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqLguvoDvBW8CdXMpE3a47L4WFhwQT2HJE20y25bk-xh_70pFTyIzGGG-R7zIOQa6B0AK-5fgfKi5FggCkoZ8hMyg5JBXjGOp6lOcD7i5-QihC2lRYmUzsjtwrfxc29ja7KN7wfrY2tD1rts0--OqkntVRfth_Xhkpw5tQv26ifPyfvjw9vyOV-_PK2Wi3VukFcxT2sIZ0A4h9ZBhQacYcyaumSsFLq2SitsGDIruDBNozQUTle01logV8Dm5GbyHXz_dbAhym1_8F0aKVHUUFcpRhZMLOP7ELx1cvDtXvmjBCrHl8g_L0kanDQhcbt006_z_6JvRsBhoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791989891</pqid></control><display><type>article</type><title>Arithmetic Properties of Polyadic Integers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chirskii, V. G.</creator><creatorcontrib>Chirskii, V. G.</creatorcontrib><description>Arithmetic properties of series of the form with are studied. The concept of infinite algebraic independence of polyadic numbers is discussed. A theorem is proved concerning the infinite algebraic independence of polyadic numbers of the class that are connected by a system of linear differential equations of a certain type.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562422700326</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Arithmetic ; Differential equations ; Mathematics ; Mathematics and Statistics ; Series (mathematics)</subject><ispartof>Doklady. Mathematics, 2022-12, Vol.106 (Suppl 2), p.S142-S146</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1064-5624, Doklady Mathematics, 2022, Vol. 106, Suppl. 2, pp. S142–S146. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2021, published in Chebyshevskii Sbornik, 2021, Vol. 22, No. 2, pp. 304–312.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-6457fc17ff2ef182c1fc33ec953357b9eaba2d323e767cddab14fb809bb726a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562422700326$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562422700326$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chirskii, V. G.</creatorcontrib><title>Arithmetic Properties of Polyadic Integers</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>Arithmetic properties of series of the form with are studied. The concept of infinite algebraic independence of polyadic numbers is discussed. A theorem is proved concerning the infinite algebraic independence of polyadic numbers of the class that are connected by a system of linear differential equations of a certain type.</description><subject>Algebra</subject><subject>Arithmetic</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Series (mathematics)</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqLguvoDvBW8CdXMpE3a47L4WFhwQT2HJE20y25bk-xh_70pFTyIzGGG-R7zIOQa6B0AK-5fgfKi5FggCkoZ8hMyg5JBXjGOp6lOcD7i5-QihC2lRYmUzsjtwrfxc29ja7KN7wfrY2tD1rts0--OqkntVRfth_Xhkpw5tQv26ifPyfvjw9vyOV-_PK2Wi3VukFcxT2sIZ0A4h9ZBhQacYcyaumSsFLq2SitsGDIruDBNozQUTle01logV8Dm5GbyHXz_dbAhym1_8F0aKVHUUFcpRhZMLOP7ELx1cvDtXvmjBCrHl8g_L0kanDQhcbt006_z_6JvRsBhoA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chirskii, V. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Arithmetic Properties of Polyadic Integers</title><author>Chirskii, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-6457fc17ff2ef182c1fc33ec953357b9eaba2d323e767cddab14fb809bb726a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Arithmetic</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Series (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chirskii, V. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chirskii, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arithmetic Properties of Polyadic Integers</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>106</volume><issue>Suppl 2</issue><spage>S142</spage><epage>S146</epage><pages>S142-S146</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>Arithmetic properties of series of the form with are studied. The concept of infinite algebraic independence of polyadic numbers is discussed. A theorem is proved concerning the infinite algebraic independence of polyadic numbers of the class that are connected by a system of linear differential equations of a certain type.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562422700326</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2022-12, Vol.106 (Suppl 2), p.S142-S146
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_2791989891
source SpringerLink Journals - AutoHoldings
subjects Algebra
Arithmetic
Differential equations
Mathematics
Mathematics and Statistics
Series (mathematics)
title Arithmetic Properties of Polyadic Integers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arithmetic%20Properties%20of%20Polyadic%20Integers&rft.jtitle=Doklady.%20Mathematics&rft.au=Chirskii,%20V.%20G.&rft.date=2022-12-01&rft.volume=106&rft.issue=Suppl%202&rft.spage=S142&rft.epage=S146&rft.pages=S142-S146&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562422700326&rft_dat=%3Cproquest_cross%3E2791989891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791989891&rft_id=info:pmid/&rfr_iscdi=true