Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3

Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-03, Vol.11 (13), p.7034-7042
Hauptverfasser: Qiu, Haifa, Yang, Tong, Zhou, Jun, Yang, Ke, Ying, Yiran, Ding, Keda, Yang, Ming, Huang, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7042
container_issue 13
container_start_page 7034
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Qiu, Haifa
Yang, Tong
Zhou, Jun
Yang, Ke
Ying, Yiran
Ding, Keda
Yang, Ming
Huang, Haitao
description Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a model system, we report tunable hydrogen evolution reaction (HER) performance governed by polarization states. Based on first-principles calculations, we find that BTO with in-plane polarization shows improved HER activity, in contrast to that with out-of-plane polarization, which is linked to in-plane dipole–dipole interaction at the surface. Interestingly, surface rumpling induced by surface relaxation and polarization states plays an important role in determining surface polarization, which significantly affects the chemical reactivity of surface oxygen. We unravel that the favorable p-band center of surface oxygen is responsible for the enhanced HER activity of in-plane polarized BTO. We further propose the HER catalytic cycle at the BTO surface to break the Sabatier limit via applying controllable polarization states. This work provides an inspiring insight into tunable ferroelectric catalysis by modulating polarization states toward robust HER and beyond.
doi_str_mv 10.1039/d2ta07907k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2791864665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791864665</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-7fb7c483465d29de3fe3d178533def1515da7b3f59d160b4b7b0e8e0d8bfeb533</originalsourceid><addsrcrecordid>eNo9jUtLxDAYRYMoOIyz8RcEXFeTpnktdfAFA7OpSxmS5suYsTY1TQfqr7eoeDfnLg73InRJyTUlTN-4MhsiNZHvJ2hREk4KWWlx-t-VOkerYTiQOYoQofUCvdZjZ2wL-G1yKe6hw3CM7ZhD7LBpcjiGPGE74Y_oxtbk0O1xH1uTwpf5cYZsMgw4euwhpQgtNDmFBt-ZOmzZBTrzph1g9cclenm4r9dPxWb7-Ly-3RQ9VSwX0lvZVIpVgrtSO2AemKNSccYceMopd0Za5rl2VBBbWWkJKCBOWQ92tpbo6ne3T_FzhCHvDnFM3Xy5K6WmSlRCcPYNoMVXrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791864665</pqid></control><display><type>article</type><title>Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Qiu, Haifa ; Yang, Tong ; Zhou, Jun ; Yang, Ke ; Ying, Yiran ; Ding, Keda ; Yang, Ming ; Huang, Haitao</creator><creatorcontrib>Qiu, Haifa ; Yang, Tong ; Zhou, Jun ; Yang, Ke ; Ying, Yiran ; Ding, Keda ; Yang, Ming ; Huang, Haitao</creatorcontrib><description>Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a model system, we report tunable hydrogen evolution reaction (HER) performance governed by polarization states. Based on first-principles calculations, we find that BTO with in-plane polarization shows improved HER activity, in contrast to that with out-of-plane polarization, which is linked to in-plane dipole–dipole interaction at the surface. Interestingly, surface rumpling induced by surface relaxation and polarization states plays an important role in determining surface polarization, which significantly affects the chemical reactivity of surface oxygen. We unravel that the favorable p-band center of surface oxygen is responsible for the enhanced HER activity of in-plane polarized BTO. We further propose the HER catalytic cycle at the BTO surface to break the Sabatier limit via applying controllable polarization states. This work provides an inspiring insight into tunable ferroelectric catalysis by modulating polarization states toward robust HER and beyond.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta07907k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Barium titanates ; Catalysis ; Catalysts ; Chemical reactions ; Controllability ; Dipole interactions ; Ferroelectric materials ; Ferroelectricity ; First principles ; Hydrogen evolution reactions ; Linear polarization ; Oxygen ; Polarization</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (13), p.7034-7042</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Qiu, Haifa</creatorcontrib><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><creatorcontrib>Ying, Yiran</creatorcontrib><creatorcontrib>Ding, Keda</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><title>Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a model system, we report tunable hydrogen evolution reaction (HER) performance governed by polarization states. Based on first-principles calculations, we find that BTO with in-plane polarization shows improved HER activity, in contrast to that with out-of-plane polarization, which is linked to in-plane dipole–dipole interaction at the surface. Interestingly, surface rumpling induced by surface relaxation and polarization states plays an important role in determining surface polarization, which significantly affects the chemical reactivity of surface oxygen. We unravel that the favorable p-band center of surface oxygen is responsible for the enhanced HER activity of in-plane polarized BTO. We further propose the HER catalytic cycle at the BTO surface to break the Sabatier limit via applying controllable polarization states. This work provides an inspiring insight into tunable ferroelectric catalysis by modulating polarization states toward robust HER and beyond.</description><subject>Barium titanates</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Controllability</subject><subject>Dipole interactions</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>First principles</subject><subject>Hydrogen evolution reactions</subject><subject>Linear polarization</subject><subject>Oxygen</subject><subject>Polarization</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jUtLxDAYRYMoOIyz8RcEXFeTpnktdfAFA7OpSxmS5suYsTY1TQfqr7eoeDfnLg73InRJyTUlTN-4MhsiNZHvJ2hREk4KWWlx-t-VOkerYTiQOYoQofUCvdZjZ2wL-G1yKe6hw3CM7ZhD7LBpcjiGPGE74Y_oxtbk0O1xH1uTwpf5cYZsMgw4euwhpQgtNDmFBt-ZOmzZBTrzph1g9cclenm4r9dPxWb7-Ly-3RQ9VSwX0lvZVIpVgrtSO2AemKNSccYceMopd0Za5rl2VBBbWWkJKCBOWQ92tpbo6ne3T_FzhCHvDnFM3Xy5K6WmSlRCcPYNoMVXrA</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Qiu, Haifa</creator><creator>Yang, Tong</creator><creator>Zhou, Jun</creator><creator>Yang, Ke</creator><creator>Ying, Yiran</creator><creator>Ding, Keda</creator><creator>Yang, Ming</creator><creator>Huang, Haitao</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230328</creationdate><title>Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3</title><author>Qiu, Haifa ; Yang, Tong ; Zhou, Jun ; Yang, Ke ; Ying, Yiran ; Ding, Keda ; Yang, Ming ; Huang, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-7fb7c483465d29de3fe3d178533def1515da7b3f59d160b4b7b0e8e0d8bfeb533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium titanates</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Controllability</topic><topic>Dipole interactions</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>First principles</topic><topic>Hydrogen evolution reactions</topic><topic>Linear polarization</topic><topic>Oxygen</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Haifa</creatorcontrib><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><creatorcontrib>Ying, Yiran</creatorcontrib><creatorcontrib>Ding, Keda</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Haifa</au><au>Yang, Tong</au><au>Zhou, Jun</au><au>Yang, Ke</au><au>Ying, Yiran</au><au>Ding, Keda</au><au>Yang, Ming</au><au>Huang, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-03-28</date><risdate>2023</risdate><volume>11</volume><issue>13</issue><spage>7034</spage><epage>7042</epage><pages>7034-7042</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a model system, we report tunable hydrogen evolution reaction (HER) performance governed by polarization states. Based on first-principles calculations, we find that BTO with in-plane polarization shows improved HER activity, in contrast to that with out-of-plane polarization, which is linked to in-plane dipole–dipole interaction at the surface. Interestingly, surface rumpling induced by surface relaxation and polarization states plays an important role in determining surface polarization, which significantly affects the chemical reactivity of surface oxygen. We unravel that the favorable p-band center of surface oxygen is responsible for the enhanced HER activity of in-plane polarized BTO. We further propose the HER catalytic cycle at the BTO surface to break the Sabatier limit via applying controllable polarization states. This work provides an inspiring insight into tunable ferroelectric catalysis by modulating polarization states toward robust HER and beyond.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta07907k</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (13), p.7034-7042
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2791864665
source Royal Society Of Chemistry Journals 2008-
subjects Barium titanates
Catalysis
Catalysts
Chemical reactions
Controllability
Dipole interactions
Ferroelectric materials
Ferroelectricity
First principles
Hydrogen evolution reactions
Linear polarization
Oxygen
Polarization
title Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20hydrogen%20evolution%20activity%20by%20modulating%20polarization%20states%20of%20ferroelectric%20BaTiO3&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Qiu,%20Haifa&rft.date=2023-03-28&rft.volume=11&rft.issue=13&rft.spage=7034&rft.epage=7042&rft.pages=7034-7042&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta07907k&rft_dat=%3Cproquest%3E2791864665%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791864665&rft_id=info:pmid/&rfr_iscdi=true