Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3
Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a mo...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-03, Vol.11 (13), p.7034-7042 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7042 |
---|---|
container_issue | 13 |
container_start_page | 7034 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Qiu, Haifa Yang, Tong Zhou, Jun Yang, Ke Ying, Yiran Ding, Keda Yang, Ming Huang, Haitao |
description | Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a model system, we report tunable hydrogen evolution reaction (HER) performance governed by polarization states. Based on first-principles calculations, we find that BTO with in-plane polarization shows improved HER activity, in contrast to that with out-of-plane polarization, which is linked to in-plane dipole–dipole interaction at the surface. Interestingly, surface rumpling induced by surface relaxation and polarization states plays an important role in determining surface polarization, which significantly affects the chemical reactivity of surface oxygen. We unravel that the favorable p-band center of surface oxygen is responsible for the enhanced HER activity of in-plane polarized BTO. We further propose the HER catalytic cycle at the BTO surface to break the Sabatier limit via applying controllable polarization states. This work provides an inspiring insight into tunable ferroelectric catalysis by modulating polarization states toward robust HER and beyond. |
doi_str_mv | 10.1039/d2ta07907k |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2791864665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791864665</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-7fb7c483465d29de3fe3d178533def1515da7b3f59d160b4b7b0e8e0d8bfeb533</originalsourceid><addsrcrecordid>eNo9jUtLxDAYRYMoOIyz8RcEXFeTpnktdfAFA7OpSxmS5suYsTY1TQfqr7eoeDfnLg73InRJyTUlTN-4MhsiNZHvJ2hREk4KWWlx-t-VOkerYTiQOYoQofUCvdZjZ2wL-G1yKe6hw3CM7ZhD7LBpcjiGPGE74Y_oxtbk0O1xH1uTwpf5cYZsMgw4euwhpQgtNDmFBt-ZOmzZBTrzph1g9cclenm4r9dPxWb7-Ly-3RQ9VSwX0lvZVIpVgrtSO2AemKNSccYceMopd0Za5rl2VBBbWWkJKCBOWQ92tpbo6ne3T_FzhCHvDnFM3Xy5K6WmSlRCcPYNoMVXrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791864665</pqid></control><display><type>article</type><title>Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Qiu, Haifa ; Yang, Tong ; Zhou, Jun ; Yang, Ke ; Ying, Yiran ; Ding, Keda ; Yang, Ming ; Huang, Haitao</creator><creatorcontrib>Qiu, Haifa ; Yang, Tong ; Zhou, Jun ; Yang, Ke ; Ying, Yiran ; Ding, Keda ; Yang, Ming ; Huang, Haitao</creatorcontrib><description>Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a model system, we report tunable hydrogen evolution reaction (HER) performance governed by polarization states. Based on first-principles calculations, we find that BTO with in-plane polarization shows improved HER activity, in contrast to that with out-of-plane polarization, which is linked to in-plane dipole–dipole interaction at the surface. Interestingly, surface rumpling induced by surface relaxation and polarization states plays an important role in determining surface polarization, which significantly affects the chemical reactivity of surface oxygen. We unravel that the favorable p-band center of surface oxygen is responsible for the enhanced HER activity of in-plane polarized BTO. We further propose the HER catalytic cycle at the BTO surface to break the Sabatier limit via applying controllable polarization states. This work provides an inspiring insight into tunable ferroelectric catalysis by modulating polarization states toward robust HER and beyond.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta07907k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Barium titanates ; Catalysis ; Catalysts ; Chemical reactions ; Controllability ; Dipole interactions ; Ferroelectric materials ; Ferroelectricity ; First principles ; Hydrogen evolution reactions ; Linear polarization ; Oxygen ; Polarization</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (13), p.7034-7042</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Qiu, Haifa</creatorcontrib><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><creatorcontrib>Ying, Yiran</creatorcontrib><creatorcontrib>Ding, Keda</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><title>Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a model system, we report tunable hydrogen evolution reaction (HER) performance governed by polarization states. Based on first-principles calculations, we find that BTO with in-plane polarization shows improved HER activity, in contrast to that with out-of-plane polarization, which is linked to in-plane dipole–dipole interaction at the surface. Interestingly, surface rumpling induced by surface relaxation and polarization states plays an important role in determining surface polarization, which significantly affects the chemical reactivity of surface oxygen. We unravel that the favorable p-band center of surface oxygen is responsible for the enhanced HER activity of in-plane polarized BTO. We further propose the HER catalytic cycle at the BTO surface to break the Sabatier limit via applying controllable polarization states. This work provides an inspiring insight into tunable ferroelectric catalysis by modulating polarization states toward robust HER and beyond.</description><subject>Barium titanates</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Controllability</subject><subject>Dipole interactions</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>First principles</subject><subject>Hydrogen evolution reactions</subject><subject>Linear polarization</subject><subject>Oxygen</subject><subject>Polarization</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jUtLxDAYRYMoOIyz8RcEXFeTpnktdfAFA7OpSxmS5suYsTY1TQfqr7eoeDfnLg73InRJyTUlTN-4MhsiNZHvJ2hREk4KWWlx-t-VOkerYTiQOYoQofUCvdZjZ2wL-G1yKe6hw3CM7ZhD7LBpcjiGPGE74Y_oxtbk0O1xH1uTwpf5cYZsMgw4euwhpQgtNDmFBt-ZOmzZBTrzph1g9cclenm4r9dPxWb7-Ly-3RQ9VSwX0lvZVIpVgrtSO2AemKNSccYceMopd0Za5rl2VBBbWWkJKCBOWQ92tpbo6ne3T_FzhCHvDnFM3Xy5K6WmSlRCcPYNoMVXrA</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Qiu, Haifa</creator><creator>Yang, Tong</creator><creator>Zhou, Jun</creator><creator>Yang, Ke</creator><creator>Ying, Yiran</creator><creator>Ding, Keda</creator><creator>Yang, Ming</creator><creator>Huang, Haitao</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230328</creationdate><title>Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3</title><author>Qiu, Haifa ; Yang, Tong ; Zhou, Jun ; Yang, Ke ; Ying, Yiran ; Ding, Keda ; Yang, Ming ; Huang, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-7fb7c483465d29de3fe3d178533def1515da7b3f59d160b4b7b0e8e0d8bfeb533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium titanates</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Controllability</topic><topic>Dipole interactions</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>First principles</topic><topic>Hydrogen evolution reactions</topic><topic>Linear polarization</topic><topic>Oxygen</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Haifa</creatorcontrib><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Yang, Ke</creatorcontrib><creatorcontrib>Ying, Yiran</creatorcontrib><creatorcontrib>Ding, Keda</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Haifa</au><au>Yang, Tong</au><au>Zhou, Jun</au><au>Yang, Ke</au><au>Ying, Yiran</au><au>Ding, Keda</au><au>Yang, Ming</au><au>Huang, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-03-28</date><risdate>2023</risdate><volume>11</volume><issue>13</issue><spage>7034</spage><epage>7042</epage><pages>7034-7042</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Switchable polarization in ferroelectric catalysts shows promise to overcome the Sabatier limit imposed on traditional catalysts. However, a comprehensive understanding of the polarization effect on electrocatalytic performance remains elusive. In this study, using ferroelectric BaTiO3 (BTO) as a model system, we report tunable hydrogen evolution reaction (HER) performance governed by polarization states. Based on first-principles calculations, we find that BTO with in-plane polarization shows improved HER activity, in contrast to that with out-of-plane polarization, which is linked to in-plane dipole–dipole interaction at the surface. Interestingly, surface rumpling induced by surface relaxation and polarization states plays an important role in determining surface polarization, which significantly affects the chemical reactivity of surface oxygen. We unravel that the favorable p-band center of surface oxygen is responsible for the enhanced HER activity of in-plane polarized BTO. We further propose the HER catalytic cycle at the BTO surface to break the Sabatier limit via applying controllable polarization states. This work provides an inspiring insight into tunable ferroelectric catalysis by modulating polarization states toward robust HER and beyond.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta07907k</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (13), p.7034-7042 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2791864665 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Barium titanates Catalysis Catalysts Chemical reactions Controllability Dipole interactions Ferroelectric materials Ferroelectricity First principles Hydrogen evolution reactions Linear polarization Oxygen Polarization |
title | Tunable hydrogen evolution activity by modulating polarization states of ferroelectric BaTiO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20hydrogen%20evolution%20activity%20by%20modulating%20polarization%20states%20of%20ferroelectric%20BaTiO3&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Qiu,%20Haifa&rft.date=2023-03-28&rft.volume=11&rft.issue=13&rft.spage=7034&rft.epage=7042&rft.pages=7034-7042&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta07907k&rft_dat=%3Cproquest%3E2791864665%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791864665&rft_id=info:pmid/&rfr_iscdi=true |