Investigating Group Distributionally Robust Optimization for Deep Imbalanced Learning: A Case Study of Binary Tabular Data Classification

One of the most studied machine learning challenges that recent studies have shown the susceptibility of deep neural networks to is the class imbalance problem. While concerted research efforts in this direction have been notable in recent years, findings have shown that the canonical learning objec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2023, Vol.14 (2)
Hauptverfasser: Mustapha, Ismail. B., Hasan, Shafaatunnur, Nabbus, Hatem S Y, Montaser, Mohamed Mostafa Ali, Olatunji, Sunday Olusanya, Shamsuddin, Siti Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title International journal of advanced computer science & applications
container_volume 14
creator Mustapha, Ismail. B.
Hasan, Shafaatunnur
Nabbus, Hatem S Y
Montaser, Mohamed Mostafa Ali
Olatunji, Sunday Olusanya
Shamsuddin, Siti Maryam
description One of the most studied machine learning challenges that recent studies have shown the susceptibility of deep neural networks to is the class imbalance problem. While concerted research efforts in this direction have been notable in recent years, findings have shown that the canonical learning objective, empirical risk minimization (ERM), is unable to achieve optimal imbalance learning in deep neural networks given its bias to the majority class. An alternative learning objective, group distributionally robust optimization (gDRO), is investigated in this study for imbalance learning, focusing on tabular imbalanced data as against image data that has dominated deep imbalance learning research. Contrary to minimizing average per instance loss as in ERM, gDRO seeks to minimize the worst group loss over the training data. Experimental findings in comparison with ERM and classical imbalance methods using four popularly used evaluation metrics in imbalance learning across several benchmark imbalance binary tabular data of varying imbalance ratios reveal impressive performance of gDRO, outperforming other compared methods in terms of g-mean and roc-auc.
doi_str_mv 10.14569/IJACSA.2023.0140286
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2791786338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791786338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-93bd77e2160503ecd5131d55f6d28709431db2c8a6c54c1a34598474f12d69563</originalsourceid><addsrcrecordid>eNotkMtKw0AUhgdRsNS-gYsB16lzn8RdTbVGCgVbwV2YJJMyJU3izESob-BbO72czbnwnx_-D4B7jKaYcZE8Zu-zdD2bEkToFGGGSCyuwIhgLiLOJbo-zXGEkfy6BRPndigUTYiI6Qj8Ze2Pdt5slTftFi5sN_Rwbpy3phi86VrVNAf40RWD83DVe7M3v-p4h3Vn4VzrHmb7QjWqLXUFl1rZNvg8wRlMldNw7YfqALsaPptW2QPcqGJoVHhUXsG0Uc6Z2pQnwztwU6vG6cmlj8Hn68smfYuWq0WWzpZRSSTzUUKLSkpNsEAcUV1WHFNccV6LisQSJSxsBSljJUrOSqwo40nMJKsxqUTCBR2Dh7Nvb7vvIWTPd91gQ06XE5lgGQtK46BiZ1VpO-esrvPemn2IkGOUn7jnZ-75kXt-4U7_AV2FdtE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791786338</pqid></control><display><type>article</type><title>Investigating Group Distributionally Robust Optimization for Deep Imbalanced Learning: A Case Study of Binary Tabular Data Classification</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mustapha, Ismail. B. ; Hasan, Shafaatunnur ; Nabbus, Hatem S Y ; Montaser, Mohamed Mostafa Ali ; Olatunji, Sunday Olusanya ; Shamsuddin, Siti Maryam</creator><creatorcontrib>Mustapha, Ismail. B. ; Hasan, Shafaatunnur ; Nabbus, Hatem S Y ; Montaser, Mohamed Mostafa Ali ; Olatunji, Sunday Olusanya ; Shamsuddin, Siti Maryam</creatorcontrib><description>One of the most studied machine learning challenges that recent studies have shown the susceptibility of deep neural networks to is the class imbalance problem. While concerted research efforts in this direction have been notable in recent years, findings have shown that the canonical learning objective, empirical risk minimization (ERM), is unable to achieve optimal imbalance learning in deep neural networks given its bias to the majority class. An alternative learning objective, group distributionally robust optimization (gDRO), is investigated in this study for imbalance learning, focusing on tabular imbalanced data as against image data that has dominated deep imbalance learning research. Contrary to minimizing average per instance loss as in ERM, gDRO seeks to minimize the worst group loss over the training data. Experimental findings in comparison with ERM and classical imbalance methods using four popularly used evaluation metrics in imbalance learning across several benchmark imbalance binary tabular data of varying imbalance ratios reveal impressive performance of gDRO, outperforming other compared methods in terms of g-mean and roc-auc.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2023.0140286</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Artificial neural networks ; Educational objectives ; Machine learning ; Neural networks ; Optimization ; Robustness ; Tables (data)</subject><ispartof>International journal of advanced computer science &amp; applications, 2023, Vol.14 (2)</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Mustapha, Ismail. B.</creatorcontrib><creatorcontrib>Hasan, Shafaatunnur</creatorcontrib><creatorcontrib>Nabbus, Hatem S Y</creatorcontrib><creatorcontrib>Montaser, Mohamed Mostafa Ali</creatorcontrib><creatorcontrib>Olatunji, Sunday Olusanya</creatorcontrib><creatorcontrib>Shamsuddin, Siti Maryam</creatorcontrib><title>Investigating Group Distributionally Robust Optimization for Deep Imbalanced Learning: A Case Study of Binary Tabular Data Classification</title><title>International journal of advanced computer science &amp; applications</title><description>One of the most studied machine learning challenges that recent studies have shown the susceptibility of deep neural networks to is the class imbalance problem. While concerted research efforts in this direction have been notable in recent years, findings have shown that the canonical learning objective, empirical risk minimization (ERM), is unable to achieve optimal imbalance learning in deep neural networks given its bias to the majority class. An alternative learning objective, group distributionally robust optimization (gDRO), is investigated in this study for imbalance learning, focusing on tabular imbalanced data as against image data that has dominated deep imbalance learning research. Contrary to minimizing average per instance loss as in ERM, gDRO seeks to minimize the worst group loss over the training data. Experimental findings in comparison with ERM and classical imbalance methods using four popularly used evaluation metrics in imbalance learning across several benchmark imbalance binary tabular data of varying imbalance ratios reveal impressive performance of gDRO, outperforming other compared methods in terms of g-mean and roc-auc.</description><subject>Artificial neural networks</subject><subject>Educational objectives</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Tables (data)</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMtKw0AUhgdRsNS-gYsB16lzn8RdTbVGCgVbwV2YJJMyJU3izESob-BbO72czbnwnx_-D4B7jKaYcZE8Zu-zdD2bEkToFGGGSCyuwIhgLiLOJbo-zXGEkfy6BRPndigUTYiI6Qj8Ze2Pdt5slTftFi5sN_Rwbpy3phi86VrVNAf40RWD83DVe7M3v-p4h3Vn4VzrHmb7QjWqLXUFl1rZNvg8wRlMldNw7YfqALsaPptW2QPcqGJoVHhUXsG0Uc6Z2pQnwztwU6vG6cmlj8Hn68smfYuWq0WWzpZRSSTzUUKLSkpNsEAcUV1WHFNccV6LisQSJSxsBSljJUrOSqwo40nMJKsxqUTCBR2Dh7Nvb7vvIWTPd91gQ06XE5lgGQtK46BiZ1VpO-esrvPemn2IkGOUn7jnZ-75kXt-4U7_AV2FdtE</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Mustapha, Ismail. B.</creator><creator>Hasan, Shafaatunnur</creator><creator>Nabbus, Hatem S Y</creator><creator>Montaser, Mohamed Mostafa Ali</creator><creator>Olatunji, Sunday Olusanya</creator><creator>Shamsuddin, Siti Maryam</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Investigating Group Distributionally Robust Optimization for Deep Imbalanced Learning: A Case Study of Binary Tabular Data Classification</title><author>Mustapha, Ismail. B. ; Hasan, Shafaatunnur ; Nabbus, Hatem S Y ; Montaser, Mohamed Mostafa Ali ; Olatunji, Sunday Olusanya ; Shamsuddin, Siti Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-93bd77e2160503ecd5131d55f6d28709431db2c8a6c54c1a34598474f12d69563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Educational objectives</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Tables (data)</topic><toplevel>online_resources</toplevel><creatorcontrib>Mustapha, Ismail. B.</creatorcontrib><creatorcontrib>Hasan, Shafaatunnur</creatorcontrib><creatorcontrib>Nabbus, Hatem S Y</creatorcontrib><creatorcontrib>Montaser, Mohamed Mostafa Ali</creatorcontrib><creatorcontrib>Olatunji, Sunday Olusanya</creatorcontrib><creatorcontrib>Shamsuddin, Siti Maryam</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mustapha, Ismail. B.</au><au>Hasan, Shafaatunnur</au><au>Nabbus, Hatem S Y</au><au>Montaser, Mohamed Mostafa Ali</au><au>Olatunji, Sunday Olusanya</au><au>Shamsuddin, Siti Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Group Distributionally Robust Optimization for Deep Imbalanced Learning: A Case Study of Binary Tabular Data Classification</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2023</date><risdate>2023</risdate><volume>14</volume><issue>2</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>One of the most studied machine learning challenges that recent studies have shown the susceptibility of deep neural networks to is the class imbalance problem. While concerted research efforts in this direction have been notable in recent years, findings have shown that the canonical learning objective, empirical risk minimization (ERM), is unable to achieve optimal imbalance learning in deep neural networks given its bias to the majority class. An alternative learning objective, group distributionally robust optimization (gDRO), is investigated in this study for imbalance learning, focusing on tabular imbalanced data as against image data that has dominated deep imbalance learning research. Contrary to minimizing average per instance loss as in ERM, gDRO seeks to minimize the worst group loss over the training data. Experimental findings in comparison with ERM and classical imbalance methods using four popularly used evaluation metrics in imbalance learning across several benchmark imbalance binary tabular data of varying imbalance ratios reveal impressive performance of gDRO, outperforming other compared methods in terms of g-mean and roc-auc.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2023.0140286</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2023, Vol.14 (2)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2791786338
source EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Educational objectives
Machine learning
Neural networks
Optimization
Robustness
Tables (data)
title Investigating Group Distributionally Robust Optimization for Deep Imbalanced Learning: A Case Study of Binary Tabular Data Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Group%20Distributionally%20Robust%20Optimization%20for%20Deep%20Imbalanced%20Learning:%20A%20Case%20Study%20of%20Binary%20Tabular%20Data%20Classification&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Mustapha,%20Ismail.%20B.&rft.date=2023&rft.volume=14&rft.issue=2&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2023.0140286&rft_dat=%3Cproquest_cross%3E2791786338%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791786338&rft_id=info:pmid/&rfr_iscdi=true