Minimizing the fluctuation of resonance driving terms in dynamic aperture optimization
Dynamic aperture (DA) is an important nonlinear property of a storage ring lattice, which has a dominant effect on beam injection efficiency and beam lifetime. Generally, minimizing both resonance driving terms (RDTs) and amplitude dependent tune shifts is an essential condition for enlarging the DA...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dynamic aperture (DA) is an important nonlinear property of a storage ring lattice, which has a dominant effect on beam injection efficiency and beam lifetime. Generally, minimizing both resonance driving terms (RDTs) and amplitude dependent tune shifts is an essential condition for enlarging the DA. In this paper, we study the correlation between the fluctuation of RDTs along the ring and the DA area with double- and multi-bend achromat lattices. It is found that minimizing the RDT fluctuations is more effective than minimizing RDTs themselves in enlarging the DA, and thus can serve as a very powerful indicator in the DA optimization. Besides, it is found that minimizing lower-order RDT fluctuations can also reduce higher-order RDTs, which are not only more computationally complicated but also more numerous. The effectiveness of controlling the RDT fluctuations in enlarging the DA confirms that the local cancellation of nonlinear effects used in some diffraction-limited storage ring lattices is more effective than the global cancellation. |
---|---|
ISSN: | 2331-8422 |