Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations

Clinical routine and retrospective cohorts commonly include multi-parametric Magnetic Resonance Imaging; however, they are mostly acquired in different anisotropic 2D views due to signal-to-noise-ratio and scan-time constraints. Thus acquired views suffer from poor out-of-plane resolution and affect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: McGinnis, Julian, Suprosanna Shit, Hongwei Bran Li, Sideri-Lampretsa, Vasiliki, Graf, Robert, Dannecker, Maik, Pan, Jiazhen, Nil Stolt Ansó, Mühlau, Mark, Kirschke, Jan S, Rueckert, Daniel, Wiestler, Benedikt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator McGinnis, Julian
Suprosanna Shit
Hongwei Bran Li
Sideri-Lampretsa, Vasiliki
Graf, Robert
Dannecker, Maik
Pan, Jiazhen
Nil Stolt Ansó
Mühlau, Mark
Kirschke, Jan S
Rueckert, Daniel
Wiestler, Benedikt
description Clinical routine and retrospective cohorts commonly include multi-parametric Magnetic Resonance Imaging; however, they are mostly acquired in different anisotropic 2D views due to signal-to-noise-ratio and scan-time constraints. Thus acquired views suffer from poor out-of-plane resolution and affect downstream volumetric image analysis that typically requires isotropic 3D scans. Combining different views of multi-contrast scans into high-resolution isotropic 3D scans is challenging due to the lack of a large training cohort, which calls for a subject-specific framework. This work proposes a novel solution to this problem leveraging Implicit Neural Representations (INR). Our proposed INR jointly learns two different contrasts of complementary views in a continuous spatial function and benefits from exchanging anatomical information between them. Trained within minutes on a single commodity GPU, our model provides realistic super-resolution across different pairs of contrasts in our experiments with three datasets. Using Mutual Information (MI) as a metric, we find that our model converges to an optimum MI amongst sequences, achieving anatomically faithful reconstruction. Code is available at: https://github.com/jqmcginnis/multi_contrast_inr/
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2791771988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791771988</sourcerecordid><originalsourceid>FETCH-proquest_journals_27917719883</originalsourceid><addsrcrecordid>eNqNyrEKwjAUheEgCBbtOwScA21qTTuLYgcdWnEtsVwlJSYxN_H5reADOB1-zjcjCS-KnFUbzhckRRyzLONbwcuySMi1U-ahgWG8jTAEeoo6KDZYE7zEKduGdtGBZx7Q6hiUNfStJG2eTqtBBXqG6KWmLbhJgAnyS3BF5nepEdLfLsn6sL_sjsx5-4qAoR9t9Ga6ei7qXIi8rqriP_UBVadB9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791771988</pqid></control><display><type>article</type><title>Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations</title><source>Free E- Journals</source><creator>McGinnis, Julian ; Suprosanna Shit ; Hongwei Bran Li ; Sideri-Lampretsa, Vasiliki ; Graf, Robert ; Dannecker, Maik ; Pan, Jiazhen ; Nil Stolt Ansó ; Mühlau, Mark ; Kirschke, Jan S ; Rueckert, Daniel ; Wiestler, Benedikt</creator><creatorcontrib>McGinnis, Julian ; Suprosanna Shit ; Hongwei Bran Li ; Sideri-Lampretsa, Vasiliki ; Graf, Robert ; Dannecker, Maik ; Pan, Jiazhen ; Nil Stolt Ansó ; Mühlau, Mark ; Kirschke, Jan S ; Rueckert, Daniel ; Wiestler, Benedikt</creatorcontrib><description>Clinical routine and retrospective cohorts commonly include multi-parametric Magnetic Resonance Imaging; however, they are mostly acquired in different anisotropic 2D views due to signal-to-noise-ratio and scan-time constraints. Thus acquired views suffer from poor out-of-plane resolution and affect downstream volumetric image analysis that typically requires isotropic 3D scans. Combining different views of multi-contrast scans into high-resolution isotropic 3D scans is challenging due to the lack of a large training cohort, which calls for a subject-specific framework. This work proposes a novel solution to this problem leveraging Implicit Neural Representations (INR). Our proposed INR jointly learns two different contrasts of complementary views in a continuous spatial function and benefits from exchanging anatomical information between them. Trained within minutes on a single commodity GPU, our model provides realistic super-resolution across different pairs of contrasts in our experiments with three datasets. Using Mutual Information (MI) as a metric, we find that our model converges to an optimum MI amongst sequences, achieving anatomically faithful reconstruction. Code is available at: https://github.com/jqmcginnis/multi_contrast_inr/</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Continuity (mathematics) ; Image acquisition ; Image analysis ; Image reconstruction ; Magnetic resonance imaging ; Representations ; Signal to noise ratio</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>McGinnis, Julian</creatorcontrib><creatorcontrib>Suprosanna Shit</creatorcontrib><creatorcontrib>Hongwei Bran Li</creatorcontrib><creatorcontrib>Sideri-Lampretsa, Vasiliki</creatorcontrib><creatorcontrib>Graf, Robert</creatorcontrib><creatorcontrib>Dannecker, Maik</creatorcontrib><creatorcontrib>Pan, Jiazhen</creatorcontrib><creatorcontrib>Nil Stolt Ansó</creatorcontrib><creatorcontrib>Mühlau, Mark</creatorcontrib><creatorcontrib>Kirschke, Jan S</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><creatorcontrib>Wiestler, Benedikt</creatorcontrib><title>Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations</title><title>arXiv.org</title><description>Clinical routine and retrospective cohorts commonly include multi-parametric Magnetic Resonance Imaging; however, they are mostly acquired in different anisotropic 2D views due to signal-to-noise-ratio and scan-time constraints. Thus acquired views suffer from poor out-of-plane resolution and affect downstream volumetric image analysis that typically requires isotropic 3D scans. Combining different views of multi-contrast scans into high-resolution isotropic 3D scans is challenging due to the lack of a large training cohort, which calls for a subject-specific framework. This work proposes a novel solution to this problem leveraging Implicit Neural Representations (INR). Our proposed INR jointly learns two different contrasts of complementary views in a continuous spatial function and benefits from exchanging anatomical information between them. Trained within minutes on a single commodity GPU, our model provides realistic super-resolution across different pairs of contrasts in our experiments with three datasets. Using Mutual Information (MI) as a metric, we find that our model converges to an optimum MI amongst sequences, achieving anatomically faithful reconstruction. Code is available at: https://github.com/jqmcginnis/multi_contrast_inr/</description><subject>Continuity (mathematics)</subject><subject>Image acquisition</subject><subject>Image analysis</subject><subject>Image reconstruction</subject><subject>Magnetic resonance imaging</subject><subject>Representations</subject><subject>Signal to noise ratio</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUheEgCBbtOwScA21qTTuLYgcdWnEtsVwlJSYxN_H5reADOB1-zjcjCS-KnFUbzhckRRyzLONbwcuySMi1U-ahgWG8jTAEeoo6KDZYE7zEKduGdtGBZx7Q6hiUNfStJG2eTqtBBXqG6KWmLbhJgAnyS3BF5nepEdLfLsn6sL_sjsx5-4qAoR9t9Ga6ei7qXIi8rqriP_UBVadB9g</recordid><startdate>20230922</startdate><enddate>20230922</enddate><creator>McGinnis, Julian</creator><creator>Suprosanna Shit</creator><creator>Hongwei Bran Li</creator><creator>Sideri-Lampretsa, Vasiliki</creator><creator>Graf, Robert</creator><creator>Dannecker, Maik</creator><creator>Pan, Jiazhen</creator><creator>Nil Stolt Ansó</creator><creator>Mühlau, Mark</creator><creator>Kirschke, Jan S</creator><creator>Rueckert, Daniel</creator><creator>Wiestler, Benedikt</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230922</creationdate><title>Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations</title><author>McGinnis, Julian ; Suprosanna Shit ; Hongwei Bran Li ; Sideri-Lampretsa, Vasiliki ; Graf, Robert ; Dannecker, Maik ; Pan, Jiazhen ; Nil Stolt Ansó ; Mühlau, Mark ; Kirschke, Jan S ; Rueckert, Daniel ; Wiestler, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27917719883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Continuity (mathematics)</topic><topic>Image acquisition</topic><topic>Image analysis</topic><topic>Image reconstruction</topic><topic>Magnetic resonance imaging</topic><topic>Representations</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>McGinnis, Julian</creatorcontrib><creatorcontrib>Suprosanna Shit</creatorcontrib><creatorcontrib>Hongwei Bran Li</creatorcontrib><creatorcontrib>Sideri-Lampretsa, Vasiliki</creatorcontrib><creatorcontrib>Graf, Robert</creatorcontrib><creatorcontrib>Dannecker, Maik</creatorcontrib><creatorcontrib>Pan, Jiazhen</creatorcontrib><creatorcontrib>Nil Stolt Ansó</creatorcontrib><creatorcontrib>Mühlau, Mark</creatorcontrib><creatorcontrib>Kirschke, Jan S</creatorcontrib><creatorcontrib>Rueckert, Daniel</creatorcontrib><creatorcontrib>Wiestler, Benedikt</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGinnis, Julian</au><au>Suprosanna Shit</au><au>Hongwei Bran Li</au><au>Sideri-Lampretsa, Vasiliki</au><au>Graf, Robert</au><au>Dannecker, Maik</au><au>Pan, Jiazhen</au><au>Nil Stolt Ansó</au><au>Mühlau, Mark</au><au>Kirschke, Jan S</au><au>Rueckert, Daniel</au><au>Wiestler, Benedikt</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations</atitle><jtitle>arXiv.org</jtitle><date>2023-09-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Clinical routine and retrospective cohorts commonly include multi-parametric Magnetic Resonance Imaging; however, they are mostly acquired in different anisotropic 2D views due to signal-to-noise-ratio and scan-time constraints. Thus acquired views suffer from poor out-of-plane resolution and affect downstream volumetric image analysis that typically requires isotropic 3D scans. Combining different views of multi-contrast scans into high-resolution isotropic 3D scans is challenging due to the lack of a large training cohort, which calls for a subject-specific framework. This work proposes a novel solution to this problem leveraging Implicit Neural Representations (INR). Our proposed INR jointly learns two different contrasts of complementary views in a continuous spatial function and benefits from exchanging anatomical information between them. Trained within minutes on a single commodity GPU, our model provides realistic super-resolution across different pairs of contrasts in our experiments with three datasets. Using Mutual Information (MI) as a metric, we find that our model converges to an optimum MI amongst sequences, achieving anatomically faithful reconstruction. Code is available at: https://github.com/jqmcginnis/multi_contrast_inr/</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2791771988
source Free E- Journals
subjects Continuity (mathematics)
Image acquisition
Image analysis
Image reconstruction
Magnetic resonance imaging
Representations
Signal to noise ratio
title Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Single-subject%20Multi-contrast%20MRI%20Super-resolution%20via%20Implicit%20Neural%20Representations&rft.jtitle=arXiv.org&rft.au=McGinnis,%20Julian&rft.date=2023-09-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2791771988%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791771988&rft_id=info:pmid/&rfr_iscdi=true