Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering
The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in t...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-03, Vol.15 (6), p.5495 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 5495 |
container_title | Sustainability |
container_volume | 15 |
creator | Reis, Sam Holliman, Peter J. Martin, Ciaran Jones, Eurig |
description | The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in the blast furnace to enable rapid gas flow. As significant CO2 greenhouse emissions are emitted, the defossilisation of these CO2 emissions is vital to net-zero carbon targets. Two iterations of a new biomass–coal hybrid fuel (ecoke®(A) and ecoke®(B)) were compared with coke breeze and an anthracite coal using oxygen bomb calorimetry, simultaneous thermal analysis (STA) combining thermogravimetry and differential scanning calorimetry, and isoconversional kinetic modelling and pyrolysis–GCMS to study the volatile matter. The calorific values of both ecoke®(A) and (B) were marginally higher than that of the coke breeze: 27.9 MJ/kg and 27.8 MJ/kg, respectively, compared with 26.5 MJ/kg for the coke breeze. A proximate analysis revealed both ecoke® samples to have higher volatile matter contents (ca. 12–13%) than the coke breeze (7.4%), but less than the anthracite coal (ca. 14%). The thermogravimetric analysis of the burnout kinetics of the fuels heated up to 1000 °C, at heating rates from 5 to 25 °C/min, showed that that the coke breeze and anthracite coal had higher ignition and burnout temperatures than the ecoke® samples. Kinetic analysis using the Freidman and Ozawa methods found that the ecoke® samples showed comparable maximum mass loss rates to the coke breeze but lower activation energies. From these results, both ecoke® samples have the potential to replace some of the coke breeze in the sintering process or EAF processes to help achieve net zero by offsetting up to 30% of the CO2 emissions. |
doi_str_mv | 10.3390/su15065495 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791712729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743937232</galeid><sourcerecordid>A743937232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e26b9fa6eaad6ee7c8e11755516c23b031cbec929ed3a9b1b16e5d25c22479093</originalsourceid><addsrcrecordid>eNpVkc9KAzEQxoMoWGovPkHAk8LW_Gk2jbe2WFsoFlq9eAnZ7GzZ0m5qkgV78x18Q5_ELRW0M4cZht_3zeFD6JqSLueK3IeaCpKKnhJnqMWIpAklgpz_2y9RJ4Q1aYpzqmjaQsNh6bYmhO_Pr5EzGzzZZ77M8biGzQMe4IWrI-Do8DPE5A28w1PvKjz3gJdlFcGX1eoKXRRmE6DzO9vodfz4Mpoks_nTdDSYJZan_ZgASzNVmBSMyVMAaftAqRRC0NQynhFObQZWMQU5NyqjGU1B5ExYxnpSEcXb6Obou_PuvYYQ9drVvmpeaiYVlZRJdqC6R2plNqDLqnDRG9t0DtvSugqKsrkPZI8rLhlnjeD2RNAwET7iytQh6OlyccreHVnrXQgeCr3z5db4vaZEHzLQfxnwH6Scdnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791712729</pqid></control><display><type>article</type><title>Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Reis, Sam ; Holliman, Peter J. ; Martin, Ciaran ; Jones, Eurig</creator><creatorcontrib>Reis, Sam ; Holliman, Peter J. ; Martin, Ciaran ; Jones, Eurig</creatorcontrib><description>The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in the blast furnace to enable rapid gas flow. As significant CO2 greenhouse emissions are emitted, the defossilisation of these CO2 emissions is vital to net-zero carbon targets. Two iterations of a new biomass–coal hybrid fuel (ecoke®(A) and ecoke®(B)) were compared with coke breeze and an anthracite coal using oxygen bomb calorimetry, simultaneous thermal analysis (STA) combining thermogravimetry and differential scanning calorimetry, and isoconversional kinetic modelling and pyrolysis–GCMS to study the volatile matter. The calorific values of both ecoke®(A) and (B) were marginally higher than that of the coke breeze: 27.9 MJ/kg and 27.8 MJ/kg, respectively, compared with 26.5 MJ/kg for the coke breeze. A proximate analysis revealed both ecoke® samples to have higher volatile matter contents (ca. 12–13%) than the coke breeze (7.4%), but less than the anthracite coal (ca. 14%). The thermogravimetric analysis of the burnout kinetics of the fuels heated up to 1000 °C, at heating rates from 5 to 25 °C/min, showed that that the coke breeze and anthracite coal had higher ignition and burnout temperatures than the ecoke® samples. Kinetic analysis using the Freidman and Ozawa methods found that the ecoke® samples showed comparable maximum mass loss rates to the coke breeze but lower activation energies. From these results, both ecoke® samples have the potential to replace some of the coke breeze in the sintering process or EAF processes to help achieve net zero by offsetting up to 30% of the CO2 emissions.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15065495</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anthracite ; Biomass ; Blast furnace gas ; Blast furnace practice ; Bomb calorimetry ; Burnout ; Calorific value ; Calorimetry ; Carbon ; Carbon dioxide ; Charcoal ; Coal ; Coke ; Decomposition ; Differential scanning calorimetry ; Emissions ; Energy ; Environmental aspects ; Fossil fuels ; Fuel consumption ; Gas flow ; Greenhouse gases ; Heat measurement ; Innovations ; Iron ; Iron compounds ; Iron ores ; Lignin ; Mechanical properties ; Methods ; Production processes ; Pyrolysis ; Sintering ; Spectrum analysis ; Steel industry ; Sustainability ; Temperature ; Thermal analysis ; Thermogravimetric analysis ; Thermogravimetry</subject><ispartof>Sustainability, 2023-03, Vol.15 (6), p.5495</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e26b9fa6eaad6ee7c8e11755516c23b031cbec929ed3a9b1b16e5d25c22479093</citedby><cites>FETCH-LOGICAL-c368t-e26b9fa6eaad6ee7c8e11755516c23b031cbec929ed3a9b1b16e5d25c22479093</cites><orcidid>0000-0002-9911-8513 ; 0000-0001-9771-7750 ; 0000-0001-6767-9458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reis, Sam</creatorcontrib><creatorcontrib>Holliman, Peter J.</creatorcontrib><creatorcontrib>Martin, Ciaran</creatorcontrib><creatorcontrib>Jones, Eurig</creatorcontrib><title>Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering</title><title>Sustainability</title><description>The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in the blast furnace to enable rapid gas flow. As significant CO2 greenhouse emissions are emitted, the defossilisation of these CO2 emissions is vital to net-zero carbon targets. Two iterations of a new biomass–coal hybrid fuel (ecoke®(A) and ecoke®(B)) were compared with coke breeze and an anthracite coal using oxygen bomb calorimetry, simultaneous thermal analysis (STA) combining thermogravimetry and differential scanning calorimetry, and isoconversional kinetic modelling and pyrolysis–GCMS to study the volatile matter. The calorific values of both ecoke®(A) and (B) were marginally higher than that of the coke breeze: 27.9 MJ/kg and 27.8 MJ/kg, respectively, compared with 26.5 MJ/kg for the coke breeze. A proximate analysis revealed both ecoke® samples to have higher volatile matter contents (ca. 12–13%) than the coke breeze (7.4%), but less than the anthracite coal (ca. 14%). The thermogravimetric analysis of the burnout kinetics of the fuels heated up to 1000 °C, at heating rates from 5 to 25 °C/min, showed that that the coke breeze and anthracite coal had higher ignition and burnout temperatures than the ecoke® samples. Kinetic analysis using the Freidman and Ozawa methods found that the ecoke® samples showed comparable maximum mass loss rates to the coke breeze but lower activation energies. From these results, both ecoke® samples have the potential to replace some of the coke breeze in the sintering process or EAF processes to help achieve net zero by offsetting up to 30% of the CO2 emissions.</description><subject>Anthracite</subject><subject>Biomass</subject><subject>Blast furnace gas</subject><subject>Blast furnace practice</subject><subject>Bomb calorimetry</subject><subject>Burnout</subject><subject>Calorific value</subject><subject>Calorimetry</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Charcoal</subject><subject>Coal</subject><subject>Coke</subject><subject>Decomposition</subject><subject>Differential scanning calorimetry</subject><subject>Emissions</subject><subject>Energy</subject><subject>Environmental aspects</subject><subject>Fossil fuels</subject><subject>Fuel consumption</subject><subject>Gas flow</subject><subject>Greenhouse gases</subject><subject>Heat measurement</subject><subject>Innovations</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>Iron ores</subject><subject>Lignin</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Production processes</subject><subject>Pyrolysis</subject><subject>Sintering</subject><subject>Spectrum analysis</subject><subject>Steel industry</subject><subject>Sustainability</subject><subject>Temperature</subject><subject>Thermal analysis</subject><subject>Thermogravimetric analysis</subject><subject>Thermogravimetry</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkc9KAzEQxoMoWGovPkHAk8LW_Gk2jbe2WFsoFlq9eAnZ7GzZ0m5qkgV78x18Q5_ELRW0M4cZht_3zeFD6JqSLueK3IeaCpKKnhJnqMWIpAklgpz_2y9RJ4Q1aYpzqmjaQsNh6bYmhO_Pr5EzGzzZZ77M8biGzQMe4IWrI-Do8DPE5A28w1PvKjz3gJdlFcGX1eoKXRRmE6DzO9vodfz4Mpoks_nTdDSYJZan_ZgASzNVmBSMyVMAaftAqRRC0NQynhFObQZWMQU5NyqjGU1B5ExYxnpSEcXb6Obou_PuvYYQ9drVvmpeaiYVlZRJdqC6R2plNqDLqnDRG9t0DtvSugqKsrkPZI8rLhlnjeD2RNAwET7iytQh6OlyccreHVnrXQgeCr3z5db4vaZEHzLQfxnwH6Scdnk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Reis, Sam</creator><creator>Holliman, Peter J.</creator><creator>Martin, Ciaran</creator><creator>Jones, Eurig</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9911-8513</orcidid><orcidid>https://orcid.org/0000-0001-9771-7750</orcidid><orcidid>https://orcid.org/0000-0001-6767-9458</orcidid></search><sort><creationdate>20230301</creationdate><title>Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering</title><author>Reis, Sam ; Holliman, Peter J. ; Martin, Ciaran ; Jones, Eurig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e26b9fa6eaad6ee7c8e11755516c23b031cbec929ed3a9b1b16e5d25c22479093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anthracite</topic><topic>Biomass</topic><topic>Blast furnace gas</topic><topic>Blast furnace practice</topic><topic>Bomb calorimetry</topic><topic>Burnout</topic><topic>Calorific value</topic><topic>Calorimetry</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Charcoal</topic><topic>Coal</topic><topic>Coke</topic><topic>Decomposition</topic><topic>Differential scanning calorimetry</topic><topic>Emissions</topic><topic>Energy</topic><topic>Environmental aspects</topic><topic>Fossil fuels</topic><topic>Fuel consumption</topic><topic>Gas flow</topic><topic>Greenhouse gases</topic><topic>Heat measurement</topic><topic>Innovations</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>Iron ores</topic><topic>Lignin</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Production processes</topic><topic>Pyrolysis</topic><topic>Sintering</topic><topic>Spectrum analysis</topic><topic>Steel industry</topic><topic>Sustainability</topic><topic>Temperature</topic><topic>Thermal analysis</topic><topic>Thermogravimetric analysis</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, Sam</creatorcontrib><creatorcontrib>Holliman, Peter J.</creatorcontrib><creatorcontrib>Martin, Ciaran</creatorcontrib><creatorcontrib>Jones, Eurig</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, Sam</au><au>Holliman, Peter J.</au><au>Martin, Ciaran</au><au>Jones, Eurig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering</atitle><jtitle>Sustainability</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>6</issue><spage>5495</spage><pages>5495-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in the blast furnace to enable rapid gas flow. As significant CO2 greenhouse emissions are emitted, the defossilisation of these CO2 emissions is vital to net-zero carbon targets. Two iterations of a new biomass–coal hybrid fuel (ecoke®(A) and ecoke®(B)) were compared with coke breeze and an anthracite coal using oxygen bomb calorimetry, simultaneous thermal analysis (STA) combining thermogravimetry and differential scanning calorimetry, and isoconversional kinetic modelling and pyrolysis–GCMS to study the volatile matter. The calorific values of both ecoke®(A) and (B) were marginally higher than that of the coke breeze: 27.9 MJ/kg and 27.8 MJ/kg, respectively, compared with 26.5 MJ/kg for the coke breeze. A proximate analysis revealed both ecoke® samples to have higher volatile matter contents (ca. 12–13%) than the coke breeze (7.4%), but less than the anthracite coal (ca. 14%). The thermogravimetric analysis of the burnout kinetics of the fuels heated up to 1000 °C, at heating rates from 5 to 25 °C/min, showed that that the coke breeze and anthracite coal had higher ignition and burnout temperatures than the ecoke® samples. Kinetic analysis using the Freidman and Ozawa methods found that the ecoke® samples showed comparable maximum mass loss rates to the coke breeze but lower activation energies. From these results, both ecoke® samples have the potential to replace some of the coke breeze in the sintering process or EAF processes to help achieve net zero by offsetting up to 30% of the CO2 emissions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15065495</doi><orcidid>https://orcid.org/0000-0002-9911-8513</orcidid><orcidid>https://orcid.org/0000-0001-9771-7750</orcidid><orcidid>https://orcid.org/0000-0001-6767-9458</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-03, Vol.15 (6), p.5495 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2791712729 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Anthracite Biomass Blast furnace gas Blast furnace practice Bomb calorimetry Burnout Calorific value Calorimetry Carbon Carbon dioxide Charcoal Coal Coke Decomposition Differential scanning calorimetry Emissions Energy Environmental aspects Fossil fuels Fuel consumption Gas flow Greenhouse gases Heat measurement Innovations Iron Iron compounds Iron ores Lignin Mechanical properties Methods Production processes Pyrolysis Sintering Spectrum analysis Steel industry Sustainability Temperature Thermal analysis Thermogravimetric analysis Thermogravimetry |
title | Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass%E2%80%93Coal%20Hybrid%20Fuel:%20A%20Route%20to%20Net-Zero%20Iron%20Ore%20Sintering&rft.jtitle=Sustainability&rft.au=Reis,%20Sam&rft.date=2023-03-01&rft.volume=15&rft.issue=6&rft.spage=5495&rft.pages=5495-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15065495&rft_dat=%3Cgale_proqu%3EA743937232%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791712729&rft_id=info:pmid/&rft_galeid=A743937232&rfr_iscdi=true |