Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering

The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-03, Vol.15 (6), p.5495
Hauptverfasser: Reis, Sam, Holliman, Peter J., Martin, Ciaran, Jones, Eurig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 5495
container_title Sustainability
container_volume 15
creator Reis, Sam
Holliman, Peter J.
Martin, Ciaran
Jones, Eurig
description The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in the blast furnace to enable rapid gas flow. As significant CO2 greenhouse emissions are emitted, the defossilisation of these CO2 emissions is vital to net-zero carbon targets. Two iterations of a new biomass–coal hybrid fuel (ecoke®(A) and ecoke®(B)) were compared with coke breeze and an anthracite coal using oxygen bomb calorimetry, simultaneous thermal analysis (STA) combining thermogravimetry and differential scanning calorimetry, and isoconversional kinetic modelling and pyrolysis–GCMS to study the volatile matter. The calorific values of both ecoke®(A) and (B) were marginally higher than that of the coke breeze: 27.9 MJ/kg and 27.8 MJ/kg, respectively, compared with 26.5 MJ/kg for the coke breeze. A proximate analysis revealed both ecoke® samples to have higher volatile matter contents (ca. 12–13%) than the coke breeze (7.4%), but less than the anthracite coal (ca. 14%). The thermogravimetric analysis of the burnout kinetics of the fuels heated up to 1000 °C, at heating rates from 5 to 25 °C/min, showed that that the coke breeze and anthracite coal had higher ignition and burnout temperatures than the ecoke® samples. Kinetic analysis using the Freidman and Ozawa methods found that the ecoke® samples showed comparable maximum mass loss rates to the coke breeze but lower activation energies. From these results, both ecoke® samples have the potential to replace some of the coke breeze in the sintering process or EAF processes to help achieve net zero by offsetting up to 30% of the CO2 emissions.
doi_str_mv 10.3390/su15065495
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791712729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743937232</galeid><sourcerecordid>A743937232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e26b9fa6eaad6ee7c8e11755516c23b031cbec929ed3a9b1b16e5d25c22479093</originalsourceid><addsrcrecordid>eNpVkc9KAzEQxoMoWGovPkHAk8LW_Gk2jbe2WFsoFlq9eAnZ7GzZ0m5qkgV78x18Q5_ELRW0M4cZht_3zeFD6JqSLueK3IeaCpKKnhJnqMWIpAklgpz_2y9RJ4Q1aYpzqmjaQsNh6bYmhO_Pr5EzGzzZZ77M8biGzQMe4IWrI-Do8DPE5A28w1PvKjz3gJdlFcGX1eoKXRRmE6DzO9vodfz4Mpoks_nTdDSYJZan_ZgASzNVmBSMyVMAaftAqRRC0NQynhFObQZWMQU5NyqjGU1B5ExYxnpSEcXb6Obou_PuvYYQ9drVvmpeaiYVlZRJdqC6R2plNqDLqnDRG9t0DtvSugqKsrkPZI8rLhlnjeD2RNAwET7iytQh6OlyccreHVnrXQgeCr3z5db4vaZEHzLQfxnwH6Scdnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791712729</pqid></control><display><type>article</type><title>Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Reis, Sam ; Holliman, Peter J. ; Martin, Ciaran ; Jones, Eurig</creator><creatorcontrib>Reis, Sam ; Holliman, Peter J. ; Martin, Ciaran ; Jones, Eurig</creatorcontrib><description>The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in the blast furnace to enable rapid gas flow. As significant CO2 greenhouse emissions are emitted, the defossilisation of these CO2 emissions is vital to net-zero carbon targets. Two iterations of a new biomass–coal hybrid fuel (ecoke®(A) and ecoke®(B)) were compared with coke breeze and an anthracite coal using oxygen bomb calorimetry, simultaneous thermal analysis (STA) combining thermogravimetry and differential scanning calorimetry, and isoconversional kinetic modelling and pyrolysis–GCMS to study the volatile matter. The calorific values of both ecoke®(A) and (B) were marginally higher than that of the coke breeze: 27.9 MJ/kg and 27.8 MJ/kg, respectively, compared with 26.5 MJ/kg for the coke breeze. A proximate analysis revealed both ecoke® samples to have higher volatile matter contents (ca. 12–13%) than the coke breeze (7.4%), but less than the anthracite coal (ca. 14%). The thermogravimetric analysis of the burnout kinetics of the fuels heated up to 1000 °C, at heating rates from 5 to 25 °C/min, showed that that the coke breeze and anthracite coal had higher ignition and burnout temperatures than the ecoke® samples. Kinetic analysis using the Freidman and Ozawa methods found that the ecoke® samples showed comparable maximum mass loss rates to the coke breeze but lower activation energies. From these results, both ecoke® samples have the potential to replace some of the coke breeze in the sintering process or EAF processes to help achieve net zero by offsetting up to 30% of the CO2 emissions.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15065495</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Anthracite ; Biomass ; Blast furnace gas ; Blast furnace practice ; Bomb calorimetry ; Burnout ; Calorific value ; Calorimetry ; Carbon ; Carbon dioxide ; Charcoal ; Coal ; Coke ; Decomposition ; Differential scanning calorimetry ; Emissions ; Energy ; Environmental aspects ; Fossil fuels ; Fuel consumption ; Gas flow ; Greenhouse gases ; Heat measurement ; Innovations ; Iron ; Iron compounds ; Iron ores ; Lignin ; Mechanical properties ; Methods ; Production processes ; Pyrolysis ; Sintering ; Spectrum analysis ; Steel industry ; Sustainability ; Temperature ; Thermal analysis ; Thermogravimetric analysis ; Thermogravimetry</subject><ispartof>Sustainability, 2023-03, Vol.15 (6), p.5495</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e26b9fa6eaad6ee7c8e11755516c23b031cbec929ed3a9b1b16e5d25c22479093</citedby><cites>FETCH-LOGICAL-c368t-e26b9fa6eaad6ee7c8e11755516c23b031cbec929ed3a9b1b16e5d25c22479093</cites><orcidid>0000-0002-9911-8513 ; 0000-0001-9771-7750 ; 0000-0001-6767-9458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Reis, Sam</creatorcontrib><creatorcontrib>Holliman, Peter J.</creatorcontrib><creatorcontrib>Martin, Ciaran</creatorcontrib><creatorcontrib>Jones, Eurig</creatorcontrib><title>Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering</title><title>Sustainability</title><description>The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in the blast furnace to enable rapid gas flow. As significant CO2 greenhouse emissions are emitted, the defossilisation of these CO2 emissions is vital to net-zero carbon targets. Two iterations of a new biomass–coal hybrid fuel (ecoke®(A) and ecoke®(B)) were compared with coke breeze and an anthracite coal using oxygen bomb calorimetry, simultaneous thermal analysis (STA) combining thermogravimetry and differential scanning calorimetry, and isoconversional kinetic modelling and pyrolysis–GCMS to study the volatile matter. The calorific values of both ecoke®(A) and (B) were marginally higher than that of the coke breeze: 27.9 MJ/kg and 27.8 MJ/kg, respectively, compared with 26.5 MJ/kg for the coke breeze. A proximate analysis revealed both ecoke® samples to have higher volatile matter contents (ca. 12–13%) than the coke breeze (7.4%), but less than the anthracite coal (ca. 14%). The thermogravimetric analysis of the burnout kinetics of the fuels heated up to 1000 °C, at heating rates from 5 to 25 °C/min, showed that that the coke breeze and anthracite coal had higher ignition and burnout temperatures than the ecoke® samples. Kinetic analysis using the Freidman and Ozawa methods found that the ecoke® samples showed comparable maximum mass loss rates to the coke breeze but lower activation energies. From these results, both ecoke® samples have the potential to replace some of the coke breeze in the sintering process or EAF processes to help achieve net zero by offsetting up to 30% of the CO2 emissions.</description><subject>Anthracite</subject><subject>Biomass</subject><subject>Blast furnace gas</subject><subject>Blast furnace practice</subject><subject>Bomb calorimetry</subject><subject>Burnout</subject><subject>Calorific value</subject><subject>Calorimetry</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Charcoal</subject><subject>Coal</subject><subject>Coke</subject><subject>Decomposition</subject><subject>Differential scanning calorimetry</subject><subject>Emissions</subject><subject>Energy</subject><subject>Environmental aspects</subject><subject>Fossil fuels</subject><subject>Fuel consumption</subject><subject>Gas flow</subject><subject>Greenhouse gases</subject><subject>Heat measurement</subject><subject>Innovations</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>Iron ores</subject><subject>Lignin</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Production processes</subject><subject>Pyrolysis</subject><subject>Sintering</subject><subject>Spectrum analysis</subject><subject>Steel industry</subject><subject>Sustainability</subject><subject>Temperature</subject><subject>Thermal analysis</subject><subject>Thermogravimetric analysis</subject><subject>Thermogravimetry</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkc9KAzEQxoMoWGovPkHAk8LW_Gk2jbe2WFsoFlq9eAnZ7GzZ0m5qkgV78x18Q5_ELRW0M4cZht_3zeFD6JqSLueK3IeaCpKKnhJnqMWIpAklgpz_2y9RJ4Q1aYpzqmjaQsNh6bYmhO_Pr5EzGzzZZ77M8biGzQMe4IWrI-Do8DPE5A28w1PvKjz3gJdlFcGX1eoKXRRmE6DzO9vodfz4Mpoks_nTdDSYJZan_ZgASzNVmBSMyVMAaftAqRRC0NQynhFObQZWMQU5NyqjGU1B5ExYxnpSEcXb6Obou_PuvYYQ9drVvmpeaiYVlZRJdqC6R2plNqDLqnDRG9t0DtvSugqKsrkPZI8rLhlnjeD2RNAwET7iytQh6OlyccreHVnrXQgeCr3z5db4vaZEHzLQfxnwH6Scdnk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Reis, Sam</creator><creator>Holliman, Peter J.</creator><creator>Martin, Ciaran</creator><creator>Jones, Eurig</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9911-8513</orcidid><orcidid>https://orcid.org/0000-0001-9771-7750</orcidid><orcidid>https://orcid.org/0000-0001-6767-9458</orcidid></search><sort><creationdate>20230301</creationdate><title>Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering</title><author>Reis, Sam ; Holliman, Peter J. ; Martin, Ciaran ; Jones, Eurig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e26b9fa6eaad6ee7c8e11755516c23b031cbec929ed3a9b1b16e5d25c22479093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anthracite</topic><topic>Biomass</topic><topic>Blast furnace gas</topic><topic>Blast furnace practice</topic><topic>Bomb calorimetry</topic><topic>Burnout</topic><topic>Calorific value</topic><topic>Calorimetry</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Charcoal</topic><topic>Coal</topic><topic>Coke</topic><topic>Decomposition</topic><topic>Differential scanning calorimetry</topic><topic>Emissions</topic><topic>Energy</topic><topic>Environmental aspects</topic><topic>Fossil fuels</topic><topic>Fuel consumption</topic><topic>Gas flow</topic><topic>Greenhouse gases</topic><topic>Heat measurement</topic><topic>Innovations</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>Iron ores</topic><topic>Lignin</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Production processes</topic><topic>Pyrolysis</topic><topic>Sintering</topic><topic>Spectrum analysis</topic><topic>Steel industry</topic><topic>Sustainability</topic><topic>Temperature</topic><topic>Thermal analysis</topic><topic>Thermogravimetric analysis</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, Sam</creatorcontrib><creatorcontrib>Holliman, Peter J.</creatorcontrib><creatorcontrib>Martin, Ciaran</creatorcontrib><creatorcontrib>Jones, Eurig</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, Sam</au><au>Holliman, Peter J.</au><au>Martin, Ciaran</au><au>Jones, Eurig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering</atitle><jtitle>Sustainability</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>6</issue><spage>5495</spage><pages>5495-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The global steel industry uses fossil fuels to produce millions of tonnes of iron ore sinter each year. Sintering is an energy-intensive process that fuses iron ore and flux to produce material that balances a high mechanical strength at a sufficient particle size to ensure a macroporous burden in the blast furnace to enable rapid gas flow. As significant CO2 greenhouse emissions are emitted, the defossilisation of these CO2 emissions is vital to net-zero carbon targets. Two iterations of a new biomass–coal hybrid fuel (ecoke®(A) and ecoke®(B)) were compared with coke breeze and an anthracite coal using oxygen bomb calorimetry, simultaneous thermal analysis (STA) combining thermogravimetry and differential scanning calorimetry, and isoconversional kinetic modelling and pyrolysis–GCMS to study the volatile matter. The calorific values of both ecoke®(A) and (B) were marginally higher than that of the coke breeze: 27.9 MJ/kg and 27.8 MJ/kg, respectively, compared with 26.5 MJ/kg for the coke breeze. A proximate analysis revealed both ecoke® samples to have higher volatile matter contents (ca. 12–13%) than the coke breeze (7.4%), but less than the anthracite coal (ca. 14%). The thermogravimetric analysis of the burnout kinetics of the fuels heated up to 1000 °C, at heating rates from 5 to 25 °C/min, showed that that the coke breeze and anthracite coal had higher ignition and burnout temperatures than the ecoke® samples. Kinetic analysis using the Freidman and Ozawa methods found that the ecoke® samples showed comparable maximum mass loss rates to the coke breeze but lower activation energies. From these results, both ecoke® samples have the potential to replace some of the coke breeze in the sintering process or EAF processes to help achieve net zero by offsetting up to 30% of the CO2 emissions.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15065495</doi><orcidid>https://orcid.org/0000-0002-9911-8513</orcidid><orcidid>https://orcid.org/0000-0001-9771-7750</orcidid><orcidid>https://orcid.org/0000-0001-6767-9458</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2023-03, Vol.15 (6), p.5495
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2791712729
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Anthracite
Biomass
Blast furnace gas
Blast furnace practice
Bomb calorimetry
Burnout
Calorific value
Calorimetry
Carbon
Carbon dioxide
Charcoal
Coal
Coke
Decomposition
Differential scanning calorimetry
Emissions
Energy
Environmental aspects
Fossil fuels
Fuel consumption
Gas flow
Greenhouse gases
Heat measurement
Innovations
Iron
Iron compounds
Iron ores
Lignin
Mechanical properties
Methods
Production processes
Pyrolysis
Sintering
Spectrum analysis
Steel industry
Sustainability
Temperature
Thermal analysis
Thermogravimetric analysis
Thermogravimetry
title Biomass–Coal Hybrid Fuel: A Route to Net-Zero Iron Ore Sintering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass%E2%80%93Coal%20Hybrid%20Fuel:%20A%20Route%20to%20Net-Zero%20Iron%20Ore%20Sintering&rft.jtitle=Sustainability&rft.au=Reis,%20Sam&rft.date=2023-03-01&rft.volume=15&rft.issue=6&rft.spage=5495&rft.pages=5495-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15065495&rft_dat=%3Cgale_proqu%3EA743937232%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791712729&rft_id=info:pmid/&rft_galeid=A743937232&rfr_iscdi=true