S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin
S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent...
Gespeichert in:
Veröffentlicht in: | Processes 2023-03, Vol.11 (3), p.835 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 835 |
container_title | Processes |
container_volume | 11 |
creator | Xiao, Fengchao Li, Xuechen Zhang, Shicheng |
description | S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent unit (SGRU) is proposed to predict the Vs, where the inputs to the model are drill cutting features. In the proposed CNN-SGRU hybrid model, CNN is adopted to capture the spatial features from the input data, and SGRU is used to extract the temporal patterns of variation from both the forward and backward directions. To illustrate the prediction effect, the glutenite reservoir in the Baikouquan Formation of Mahu Sag, Junggar Basin is taken as an example. Mineral and pore information of drill cuttings, including siliciclastic content, clay content, quartz content, and void area ratio is chosen as the input data of the CNN-SGRU hybrid model. Three indices are used to quantitatively evaluate the prediction performance, including Mean absolute percentage error (MAPE), Root mean square error (RMSE), and Mean absolute error (MAE). The results show that the prediction accuracy of the proposed model is higher than that of the Xu-White model, CNN, and GRU. Furthermore, the results indicate that drill cuttings can replace logging data to predict Vs. |
doi_str_mv | 10.3390/pr11030835 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791710464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743935420</galeid><sourcerecordid>A743935420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-af3592aaefe1377889dc146ec3d6f8e2fa7533e4a04701768bb8cbf43963bb193</originalsourceid><addsrcrecordid>eNpNUcFu1DAQjRBIVKUXvmAkbogUO07imNuypS2ogMS2cIwmzjh1Se2t7RTtn_C5eLVIMCPNGz29N-8wRfGSs1MhFHu7DZwzwTrRPCmOqqqSpZJcPv1vf16cxHjHcikuuqY9Kn5vyh_4SPCdZq9t2sG5D6QxJusmuIn7eRbsPMN6SXsuAroRzoi2cLkbgh3hCy0B5wzplw8_4ztYwRojwSYt4w68A4RrO90muJiXRM4mgm8UKTx6G8A6-Iy3C2xwegOfFjdNGOA95twXxTODc6STv3hc3Jx_uF5flldfLz6uV1elrpRIJRrRqAqRDHEhZdepUfO6JS3G1nRUGZSNEFQjqyXjsu2GodODqYVqxTBwJY6LV4e72-AfFoqpv_NLcDmyr6TikrO6rbPq9KCacKbeOuNTQJ17pHurvSNjM7-S-a5o6oplw-uDQQcfYyDTb4O9x7DrOev33-r_fUv8AUa3htc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791710464</pqid></control><display><type>article</type><title>S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiao, Fengchao ; Li, Xuechen ; Zhang, Shicheng</creator><creatorcontrib>Xiao, Fengchao ; Li, Xuechen ; Zhang, Shicheng</creatorcontrib><description>S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent unit (SGRU) is proposed to predict the Vs, where the inputs to the model are drill cutting features. In the proposed CNN-SGRU hybrid model, CNN is adopted to capture the spatial features from the input data, and SGRU is used to extract the temporal patterns of variation from both the forward and backward directions. To illustrate the prediction effect, the glutenite reservoir in the Baikouquan Formation of Mahu Sag, Junggar Basin is taken as an example. Mineral and pore information of drill cuttings, including siliciclastic content, clay content, quartz content, and void area ratio is chosen as the input data of the CNN-SGRU hybrid model. Three indices are used to quantitatively evaluate the prediction performance, including Mean absolute percentage error (MAPE), Root mean square error (RMSE), and Mean absolute error (MAE). The results show that the prediction accuracy of the proposed model is higher than that of the Xu-White model, CNN, and GRU. Furthermore, the results indicate that drill cuttings can replace logging data to predict Vs.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11030835</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Automation ; Case studies ; Clay minerals ; Data logging ; Deep learning ; Drilling ; Forecasting ; Machine learning ; Methods ; Mineralogy ; Neural networks ; Predictions ; Propagation ; Reservoirs ; Root-mean-square errors ; S waves ; Velocity ; Wave propagation ; Wave velocity</subject><ispartof>Processes, 2023-03, Vol.11 (3), p.835</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-af3592aaefe1377889dc146ec3d6f8e2fa7533e4a04701768bb8cbf43963bb193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Xiao, Fengchao</creatorcontrib><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Zhang, Shicheng</creatorcontrib><title>S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin</title><title>Processes</title><description>S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent unit (SGRU) is proposed to predict the Vs, where the inputs to the model are drill cutting features. In the proposed CNN-SGRU hybrid model, CNN is adopted to capture the spatial features from the input data, and SGRU is used to extract the temporal patterns of variation from both the forward and backward directions. To illustrate the prediction effect, the glutenite reservoir in the Baikouquan Formation of Mahu Sag, Junggar Basin is taken as an example. Mineral and pore information of drill cuttings, including siliciclastic content, clay content, quartz content, and void area ratio is chosen as the input data of the CNN-SGRU hybrid model. Three indices are used to quantitatively evaluate the prediction performance, including Mean absolute percentage error (MAPE), Root mean square error (RMSE), and Mean absolute error (MAE). The results show that the prediction accuracy of the proposed model is higher than that of the Xu-White model, CNN, and GRU. Furthermore, the results indicate that drill cuttings can replace logging data to predict Vs.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Case studies</subject><subject>Clay minerals</subject><subject>Data logging</subject><subject>Deep learning</subject><subject>Drilling</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Mineralogy</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Propagation</subject><subject>Reservoirs</subject><subject>Root-mean-square errors</subject><subject>S waves</subject><subject>Velocity</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUcFu1DAQjRBIVKUXvmAkbogUO07imNuypS2ogMS2cIwmzjh1Se2t7RTtn_C5eLVIMCPNGz29N-8wRfGSs1MhFHu7DZwzwTrRPCmOqqqSpZJcPv1vf16cxHjHcikuuqY9Kn5vyh_4SPCdZq9t2sG5D6QxJusmuIn7eRbsPMN6SXsuAroRzoi2cLkbgh3hCy0B5wzplw8_4ztYwRojwSYt4w68A4RrO90muJiXRM4mgm8UKTx6G8A6-Iy3C2xwegOfFjdNGOA95twXxTODc6STv3hc3Jx_uF5flldfLz6uV1elrpRIJRrRqAqRDHEhZdepUfO6JS3G1nRUGZSNEFQjqyXjsu2GodODqYVqxTBwJY6LV4e72-AfFoqpv_NLcDmyr6TikrO6rbPq9KCacKbeOuNTQJ17pHurvSNjM7-S-a5o6oplw-uDQQcfYyDTb4O9x7DrOev33-r_fUv8AUa3htc</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Xiao, Fengchao</creator><creator>Li, Xuechen</creator><creator>Zhang, Shicheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230301</creationdate><title>S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin</title><author>Xiao, Fengchao ; Li, Xuechen ; Zhang, Shicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-af3592aaefe1377889dc146ec3d6f8e2fa7533e4a04701768bb8cbf43963bb193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Case studies</topic><topic>Clay minerals</topic><topic>Data logging</topic><topic>Deep learning</topic><topic>Drilling</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Mineralogy</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Propagation</topic><topic>Reservoirs</topic><topic>Root-mean-square errors</topic><topic>S waves</topic><topic>Velocity</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Fengchao</creatorcontrib><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Zhang, Shicheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Fengchao</au><au>Li, Xuechen</au><au>Zhang, Shicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin</atitle><jtitle>Processes</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>835</spage><pages>835-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent unit (SGRU) is proposed to predict the Vs, where the inputs to the model are drill cutting features. In the proposed CNN-SGRU hybrid model, CNN is adopted to capture the spatial features from the input data, and SGRU is used to extract the temporal patterns of variation from both the forward and backward directions. To illustrate the prediction effect, the glutenite reservoir in the Baikouquan Formation of Mahu Sag, Junggar Basin is taken as an example. Mineral and pore information of drill cuttings, including siliciclastic content, clay content, quartz content, and void area ratio is chosen as the input data of the CNN-SGRU hybrid model. Three indices are used to quantitatively evaluate the prediction performance, including Mean absolute percentage error (MAPE), Root mean square error (RMSE), and Mean absolute error (MAE). The results show that the prediction accuracy of the proposed model is higher than that of the Xu-White model, CNN, and GRU. Furthermore, the results indicate that drill cuttings can replace logging data to predict Vs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11030835</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-03, Vol.11 (3), p.835 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2791710464 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Artificial intelligence Artificial neural networks Automation Case studies Clay minerals Data logging Deep learning Drilling Forecasting Machine learning Methods Mineralogy Neural networks Predictions Propagation Reservoirs Root-mean-square errors S waves Velocity Wave propagation Wave velocity |
title | S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S-Wave%20Velocity%20Forecasting%20Using%20Drill%20Cuttings%20and%20Deep%20Hybrid%20Neural%20Networks:%20A%20Case%20Study%20on%20a%20Tight%20Glutenite%20Reservoir%20in%20Mahu%20Sag,%20Junggar%20Basin&rft.jtitle=Processes&rft.au=Xiao,%20Fengchao&rft.date=2023-03-01&rft.volume=11&rft.issue=3&rft.spage=835&rft.pages=835-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11030835&rft_dat=%3Cgale_proqu%3EA743935420%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791710464&rft_id=info:pmid/&rft_galeid=A743935420&rfr_iscdi=true |