S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin

S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-03, Vol.11 (3), p.835
Hauptverfasser: Xiao, Fengchao, Li, Xuechen, Zhang, Shicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 835
container_title Processes
container_volume 11
creator Xiao, Fengchao
Li, Xuechen
Zhang, Shicheng
description S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent unit (SGRU) is proposed to predict the Vs, where the inputs to the model are drill cutting features. In the proposed CNN-SGRU hybrid model, CNN is adopted to capture the spatial features from the input data, and SGRU is used to extract the temporal patterns of variation from both the forward and backward directions. To illustrate the prediction effect, the glutenite reservoir in the Baikouquan Formation of Mahu Sag, Junggar Basin is taken as an example. Mineral and pore information of drill cuttings, including siliciclastic content, clay content, quartz content, and void area ratio is chosen as the input data of the CNN-SGRU hybrid model. Three indices are used to quantitatively evaluate the prediction performance, including Mean absolute percentage error (MAPE), Root mean square error (RMSE), and Mean absolute error (MAE). The results show that the prediction accuracy of the proposed model is higher than that of the Xu-White model, CNN, and GRU. Furthermore, the results indicate that drill cuttings can replace logging data to predict Vs.
doi_str_mv 10.3390/pr11030835
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791710464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743935420</galeid><sourcerecordid>A743935420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-af3592aaefe1377889dc146ec3d6f8e2fa7533e4a04701768bb8cbf43963bb193</originalsourceid><addsrcrecordid>eNpNUcFu1DAQjRBIVKUXvmAkbogUO07imNuypS2ogMS2cIwmzjh1Se2t7RTtn_C5eLVIMCPNGz29N-8wRfGSs1MhFHu7DZwzwTrRPCmOqqqSpZJcPv1vf16cxHjHcikuuqY9Kn5vyh_4SPCdZq9t2sG5D6QxJusmuIn7eRbsPMN6SXsuAroRzoi2cLkbgh3hCy0B5wzplw8_4ztYwRojwSYt4w68A4RrO90muJiXRM4mgm8UKTx6G8A6-Iy3C2xwegOfFjdNGOA95twXxTODc6STv3hc3Jx_uF5flldfLz6uV1elrpRIJRrRqAqRDHEhZdepUfO6JS3G1nRUGZSNEFQjqyXjsu2GodODqYVqxTBwJY6LV4e72-AfFoqpv_NLcDmyr6TikrO6rbPq9KCacKbeOuNTQJ17pHurvSNjM7-S-a5o6oplw-uDQQcfYyDTb4O9x7DrOev33-r_fUv8AUa3htc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791710464</pqid></control><display><type>article</type><title>S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xiao, Fengchao ; Li, Xuechen ; Zhang, Shicheng</creator><creatorcontrib>Xiao, Fengchao ; Li, Xuechen ; Zhang, Shicheng</creatorcontrib><description>S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent unit (SGRU) is proposed to predict the Vs, where the inputs to the model are drill cutting features. In the proposed CNN-SGRU hybrid model, CNN is adopted to capture the spatial features from the input data, and SGRU is used to extract the temporal patterns of variation from both the forward and backward directions. To illustrate the prediction effect, the glutenite reservoir in the Baikouquan Formation of Mahu Sag, Junggar Basin is taken as an example. Mineral and pore information of drill cuttings, including siliciclastic content, clay content, quartz content, and void area ratio is chosen as the input data of the CNN-SGRU hybrid model. Three indices are used to quantitatively evaluate the prediction performance, including Mean absolute percentage error (MAPE), Root mean square error (RMSE), and Mean absolute error (MAE). The results show that the prediction accuracy of the proposed model is higher than that of the Xu-White model, CNN, and GRU. Furthermore, the results indicate that drill cuttings can replace logging data to predict Vs.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11030835</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Automation ; Case studies ; Clay minerals ; Data logging ; Deep learning ; Drilling ; Forecasting ; Machine learning ; Methods ; Mineralogy ; Neural networks ; Predictions ; Propagation ; Reservoirs ; Root-mean-square errors ; S waves ; Velocity ; Wave propagation ; Wave velocity</subject><ispartof>Processes, 2023-03, Vol.11 (3), p.835</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-af3592aaefe1377889dc146ec3d6f8e2fa7533e4a04701768bb8cbf43963bb193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Xiao, Fengchao</creatorcontrib><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Zhang, Shicheng</creatorcontrib><title>S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin</title><title>Processes</title><description>S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent unit (SGRU) is proposed to predict the Vs, where the inputs to the model are drill cutting features. In the proposed CNN-SGRU hybrid model, CNN is adopted to capture the spatial features from the input data, and SGRU is used to extract the temporal patterns of variation from both the forward and backward directions. To illustrate the prediction effect, the glutenite reservoir in the Baikouquan Formation of Mahu Sag, Junggar Basin is taken as an example. Mineral and pore information of drill cuttings, including siliciclastic content, clay content, quartz content, and void area ratio is chosen as the input data of the CNN-SGRU hybrid model. Three indices are used to quantitatively evaluate the prediction performance, including Mean absolute percentage error (MAPE), Root mean square error (RMSE), and Mean absolute error (MAE). The results show that the prediction accuracy of the proposed model is higher than that of the Xu-White model, CNN, and GRU. Furthermore, the results indicate that drill cuttings can replace logging data to predict Vs.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Case studies</subject><subject>Clay minerals</subject><subject>Data logging</subject><subject>Deep learning</subject><subject>Drilling</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Mineralogy</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Propagation</subject><subject>Reservoirs</subject><subject>Root-mean-square errors</subject><subject>S waves</subject><subject>Velocity</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUcFu1DAQjRBIVKUXvmAkbogUO07imNuypS2ogMS2cIwmzjh1Se2t7RTtn_C5eLVIMCPNGz29N-8wRfGSs1MhFHu7DZwzwTrRPCmOqqqSpZJcPv1vf16cxHjHcikuuqY9Kn5vyh_4SPCdZq9t2sG5D6QxJusmuIn7eRbsPMN6SXsuAroRzoi2cLkbgh3hCy0B5wzplw8_4ztYwRojwSYt4w68A4RrO90muJiXRM4mgm8UKTx6G8A6-Iy3C2xwegOfFjdNGOA95twXxTODc6STv3hc3Jx_uF5flldfLz6uV1elrpRIJRrRqAqRDHEhZdepUfO6JS3G1nRUGZSNEFQjqyXjsu2GodODqYVqxTBwJY6LV4e72-AfFoqpv_NLcDmyr6TikrO6rbPq9KCacKbeOuNTQJ17pHurvSNjM7-S-a5o6oplw-uDQQcfYyDTb4O9x7DrOev33-r_fUv8AUa3htc</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Xiao, Fengchao</creator><creator>Li, Xuechen</creator><creator>Zhang, Shicheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230301</creationdate><title>S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin</title><author>Xiao, Fengchao ; Li, Xuechen ; Zhang, Shicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-af3592aaefe1377889dc146ec3d6f8e2fa7533e4a04701768bb8cbf43963bb193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Case studies</topic><topic>Clay minerals</topic><topic>Data logging</topic><topic>Deep learning</topic><topic>Drilling</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Mineralogy</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Propagation</topic><topic>Reservoirs</topic><topic>Root-mean-square errors</topic><topic>S waves</topic><topic>Velocity</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Fengchao</creatorcontrib><creatorcontrib>Li, Xuechen</creatorcontrib><creatorcontrib>Zhang, Shicheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Fengchao</au><au>Li, Xuechen</au><au>Zhang, Shicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin</atitle><jtitle>Processes</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>835</spage><pages>835-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>S-wave velocity (Vs) is a critical petrophysical parameter for reservoir characterization. It is desirable to predict Vs based on conventional logging data, but the logging cost is high. Therefore, a deep hybrid neural network coupling the convolutional neural network (CNN), Stacked gated recurrent unit (SGRU) is proposed to predict the Vs, where the inputs to the model are drill cutting features. In the proposed CNN-SGRU hybrid model, CNN is adopted to capture the spatial features from the input data, and SGRU is used to extract the temporal patterns of variation from both the forward and backward directions. To illustrate the prediction effect, the glutenite reservoir in the Baikouquan Formation of Mahu Sag, Junggar Basin is taken as an example. Mineral and pore information of drill cuttings, including siliciclastic content, clay content, quartz content, and void area ratio is chosen as the input data of the CNN-SGRU hybrid model. Three indices are used to quantitatively evaluate the prediction performance, including Mean absolute percentage error (MAPE), Root mean square error (RMSE), and Mean absolute error (MAE). The results show that the prediction accuracy of the proposed model is higher than that of the Xu-White model, CNN, and GRU. Furthermore, the results indicate that drill cuttings can replace logging data to predict Vs.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11030835</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-03, Vol.11 (3), p.835
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2791710464
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Automation
Case studies
Clay minerals
Data logging
Deep learning
Drilling
Forecasting
Machine learning
Methods
Mineralogy
Neural networks
Predictions
Propagation
Reservoirs
Root-mean-square errors
S waves
Velocity
Wave propagation
Wave velocity
title S-Wave Velocity Forecasting Using Drill Cuttings and Deep Hybrid Neural Networks: A Case Study on a Tight Glutenite Reservoir in Mahu Sag, Junggar Basin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S-Wave%20Velocity%20Forecasting%20Using%20Drill%20Cuttings%20and%20Deep%20Hybrid%20Neural%20Networks:%20A%20Case%20Study%20on%20a%20Tight%20Glutenite%20Reservoir%20in%20Mahu%20Sag,%20Junggar%20Basin&rft.jtitle=Processes&rft.au=Xiao,%20Fengchao&rft.date=2023-03-01&rft.volume=11&rft.issue=3&rft.spage=835&rft.pages=835-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11030835&rft_dat=%3Cgale_proqu%3EA743935420%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791710464&rft_id=info:pmid/&rft_galeid=A743935420&rfr_iscdi=true