Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches
Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex reg...
Gespeichert in:
Veröffentlicht in: | Processes 2023-03, Vol.11 (3), p.874 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 874 |
container_title | Processes |
container_volume | 11 |
creator | Aboulmouna, Lina Khanum, Sana Heidari, Mohsen Raja, Rubesh Gupta, Shakti Maurya, Mano R Grama, Ananth Subramaniam, Shankar Ramkrishna, Doraiswami |
description | Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism. |
doi_str_mv | 10.3390/pr11030874 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791710322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743935459</galeid><sourcerecordid>A743935459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-7be889f38ea452e01168adc5898349cd8fd012427940fedef37adfd31f902e6a3</originalsourceid><addsrcrecordid>eNptUU1P3DAQjSoqFVEu_QWWekMK9UeytrmtIqBIbHuh52jWHm9MEzvYgRU_ov-5piABUmcOMxq9N2_0pqq-MHoqhKbf5sQYFVTJ5kN1yDmXtZZMHrzpP1XHOd_SEpoJ1a4Oqz8bWAacYPEGRrKJFkcfdiQ6cu5NzBCit2SDC2zj6PNEfCAbMCnOA-yQdDiO-Yx0j1tMAcsOcpFgwn1Mv0kXp60PaMneLwP5ER9wJFfBxfQkFkN9M2BM_zjreU4RzID5c_XRwZjx-KUeVb8uzm-67_X1z8urbn1dG7HiSy23qJR2QiE0LUfK2EqBNa3SSjTaWOUsZbzhUjfUoUUnJFhnBXOaclyBOKq-Pu8twnf3mJf-Nt6nUCT7QmKy2Mj5K2oHI_a-3L4kMJPPpl_LRmjRNq0uqNP_oEpanIqFAZ0v83eEk2dCsTHnhK6fk58gPfaM9k-P7F8fKf4CDaGQ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791710322</pqid></control><display><type>article</type><title>Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Aboulmouna, Lina ; Khanum, Sana ; Heidari, Mohsen ; Raja, Rubesh ; Gupta, Shakti ; Maurya, Mano R ; Grama, Ananth ; Subramaniam, Shankar ; Ramkrishna, Doraiswami</creator><creatorcontrib>Aboulmouna, Lina ; Khanum, Sana ; Heidari, Mohsen ; Raja, Rubesh ; Gupta, Shakti ; Maurya, Mano R ; Grama, Ananth ; Subramaniam, Shankar ; Ramkrishna, Doraiswami</creatorcontrib><description>Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11030874</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adenosine triphosphate ; Analysis ; Arachidonic acid ; Biological effects ; Chemokines ; Coronaviruses ; COVID-19 ; Cybernetics ; Cytokine storm ; Cytokines ; Eicosanoids ; Enzymes ; Gene expression ; Inflammation ; Inflammatory diseases ; Inflammatory response ; Information theory ; Leukotrienes ; Lipids ; Macrophages ; Mathematical models ; Metabolism ; Metabolites ; Monocyte chemoattractant protein 1 ; Optimization ; Parameters ; Physiological aspects ; Prostaglandins ; Signal transduction ; Signaling ; Tumor necrosis factor-TNF ; Variables</subject><ispartof>Processes, 2023-03, Vol.11 (3), p.874</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-7be889f38ea452e01168adc5898349cd8fd012427940fedef37adfd31f902e6a3</citedby><cites>FETCH-LOGICAL-c362t-7be889f38ea452e01168adc5898349cd8fd012427940fedef37adfd31f902e6a3</cites><orcidid>0000-0002-7876-388X ; 0000-0002-0012-2900 ; 0000-0003-2598-1434 ; 0000-0002-3204-0061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Aboulmouna, Lina</creatorcontrib><creatorcontrib>Khanum, Sana</creatorcontrib><creatorcontrib>Heidari, Mohsen</creatorcontrib><creatorcontrib>Raja, Rubesh</creatorcontrib><creatorcontrib>Gupta, Shakti</creatorcontrib><creatorcontrib>Maurya, Mano R</creatorcontrib><creatorcontrib>Grama, Ananth</creatorcontrib><creatorcontrib>Subramaniam, Shankar</creatorcontrib><creatorcontrib>Ramkrishna, Doraiswami</creatorcontrib><title>Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches</title><title>Processes</title><description>Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism.</description><subject>Adenosine triphosphate</subject><subject>Analysis</subject><subject>Arachidonic acid</subject><subject>Biological effects</subject><subject>Chemokines</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cybernetics</subject><subject>Cytokine storm</subject><subject>Cytokines</subject><subject>Eicosanoids</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Inflammation</subject><subject>Inflammatory diseases</subject><subject>Inflammatory response</subject><subject>Information theory</subject><subject>Leukotrienes</subject><subject>Lipids</subject><subject>Macrophages</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physiological aspects</subject><subject>Prostaglandins</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Tumor necrosis factor-TNF</subject><subject>Variables</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUU1P3DAQjSoqFVEu_QWWekMK9UeytrmtIqBIbHuh52jWHm9MEzvYgRU_ov-5piABUmcOMxq9N2_0pqq-MHoqhKbf5sQYFVTJ5kN1yDmXtZZMHrzpP1XHOd_SEpoJ1a4Oqz8bWAacYPEGRrKJFkcfdiQ6cu5NzBCit2SDC2zj6PNEfCAbMCnOA-yQdDiO-Yx0j1tMAcsOcpFgwn1Mv0kXp60PaMneLwP5ER9wJFfBxfQkFkN9M2BM_zjreU4RzID5c_XRwZjx-KUeVb8uzm-67_X1z8urbn1dG7HiSy23qJR2QiE0LUfK2EqBNa3SSjTaWOUsZbzhUjfUoUUnJFhnBXOaclyBOKq-Pu8twnf3mJf-Nt6nUCT7QmKy2Mj5K2oHI_a-3L4kMJPPpl_LRmjRNq0uqNP_oEpanIqFAZ0v83eEk2dCsTHnhK6fk58gPfaM9k-P7F8fKf4CDaGQ2w</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Aboulmouna, Lina</creator><creator>Khanum, Sana</creator><creator>Heidari, Mohsen</creator><creator>Raja, Rubesh</creator><creator>Gupta, Shakti</creator><creator>Maurya, Mano R</creator><creator>Grama, Ananth</creator><creator>Subramaniam, Shankar</creator><creator>Ramkrishna, Doraiswami</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7876-388X</orcidid><orcidid>https://orcid.org/0000-0002-0012-2900</orcidid><orcidid>https://orcid.org/0000-0003-2598-1434</orcidid><orcidid>https://orcid.org/0000-0002-3204-0061</orcidid></search><sort><creationdate>20230301</creationdate><title>Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches</title><author>Aboulmouna, Lina ; Khanum, Sana ; Heidari, Mohsen ; Raja, Rubesh ; Gupta, Shakti ; Maurya, Mano R ; Grama, Ananth ; Subramaniam, Shankar ; Ramkrishna, Doraiswami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-7be889f38ea452e01168adc5898349cd8fd012427940fedef37adfd31f902e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenosine triphosphate</topic><topic>Analysis</topic><topic>Arachidonic acid</topic><topic>Biological effects</topic><topic>Chemokines</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cybernetics</topic><topic>Cytokine storm</topic><topic>Cytokines</topic><topic>Eicosanoids</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Inflammation</topic><topic>Inflammatory diseases</topic><topic>Inflammatory response</topic><topic>Information theory</topic><topic>Leukotrienes</topic><topic>Lipids</topic><topic>Macrophages</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physiological aspects</topic><topic>Prostaglandins</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Tumor necrosis factor-TNF</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboulmouna, Lina</creatorcontrib><creatorcontrib>Khanum, Sana</creatorcontrib><creatorcontrib>Heidari, Mohsen</creatorcontrib><creatorcontrib>Raja, Rubesh</creatorcontrib><creatorcontrib>Gupta, Shakti</creatorcontrib><creatorcontrib>Maurya, Mano R</creatorcontrib><creatorcontrib>Grama, Ananth</creatorcontrib><creatorcontrib>Subramaniam, Shankar</creatorcontrib><creatorcontrib>Ramkrishna, Doraiswami</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboulmouna, Lina</au><au>Khanum, Sana</au><au>Heidari, Mohsen</au><au>Raja, Rubesh</au><au>Gupta, Shakti</au><au>Maurya, Mano R</au><au>Grama, Ananth</au><au>Subramaniam, Shankar</au><au>Ramkrishna, Doraiswami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches</atitle><jtitle>Processes</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>874</spage><pages>874-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11030874</doi><orcidid>https://orcid.org/0000-0002-7876-388X</orcidid><orcidid>https://orcid.org/0000-0002-0012-2900</orcidid><orcidid>https://orcid.org/0000-0003-2598-1434</orcidid><orcidid>https://orcid.org/0000-0002-3204-0061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-03, Vol.11 (3), p.874 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2791710322 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Adenosine triphosphate Analysis Arachidonic acid Biological effects Chemokines Coronaviruses COVID-19 Cybernetics Cytokine storm Cytokines Eicosanoids Enzymes Gene expression Inflammation Inflammatory diseases Inflammatory response Information theory Leukotrienes Lipids Macrophages Mathematical models Metabolism Metabolites Monocyte chemoattractant protein 1 Optimization Parameters Physiological aspects Prostaglandins Signal transduction Signaling Tumor necrosis factor-TNF Variables |
title | Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Eicosanoid%20Metabolism%20in%20Macrophage%20Cells:%20Cybernetic%20Framework%20Combined%20with%20Novel%20Information-Theoretic%20Approaches&rft.jtitle=Processes&rft.au=Aboulmouna,%20Lina&rft.date=2023-03-01&rft.volume=11&rft.issue=3&rft.spage=874&rft.pages=874-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11030874&rft_dat=%3Cgale_proqu%3EA743935459%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791710322&rft_id=info:pmid/&rft_galeid=A743935459&rfr_iscdi=true |