Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches

Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-03, Vol.11 (3), p.874
Hauptverfasser: Aboulmouna, Lina, Khanum, Sana, Heidari, Mohsen, Raja, Rubesh, Gupta, Shakti, Maurya, Mano R, Grama, Ananth, Subramaniam, Shankar, Ramkrishna, Doraiswami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 874
container_title Processes
container_volume 11
creator Aboulmouna, Lina
Khanum, Sana
Heidari, Mohsen
Raja, Rubesh
Gupta, Shakti
Maurya, Mano R
Grama, Ananth
Subramaniam, Shankar
Ramkrishna, Doraiswami
description Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism.
doi_str_mv 10.3390/pr11030874
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791710322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743935459</galeid><sourcerecordid>A743935459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-7be889f38ea452e01168adc5898349cd8fd012427940fedef37adfd31f902e6a3</originalsourceid><addsrcrecordid>eNptUU1P3DAQjSoqFVEu_QWWekMK9UeytrmtIqBIbHuh52jWHm9MEzvYgRU_ov-5piABUmcOMxq9N2_0pqq-MHoqhKbf5sQYFVTJ5kN1yDmXtZZMHrzpP1XHOd_SEpoJ1a4Oqz8bWAacYPEGRrKJFkcfdiQ6cu5NzBCit2SDC2zj6PNEfCAbMCnOA-yQdDiO-Yx0j1tMAcsOcpFgwn1Mv0kXp60PaMneLwP5ER9wJFfBxfQkFkN9M2BM_zjreU4RzID5c_XRwZjx-KUeVb8uzm-67_X1z8urbn1dG7HiSy23qJR2QiE0LUfK2EqBNa3SSjTaWOUsZbzhUjfUoUUnJFhnBXOaclyBOKq-Pu8twnf3mJf-Nt6nUCT7QmKy2Mj5K2oHI_a-3L4kMJPPpl_LRmjRNq0uqNP_oEpanIqFAZ0v83eEk2dCsTHnhK6fk58gPfaM9k-P7F8fKf4CDaGQ2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791710322</pqid></control><display><type>article</type><title>Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Aboulmouna, Lina ; Khanum, Sana ; Heidari, Mohsen ; Raja, Rubesh ; Gupta, Shakti ; Maurya, Mano R ; Grama, Ananth ; Subramaniam, Shankar ; Ramkrishna, Doraiswami</creator><creatorcontrib>Aboulmouna, Lina ; Khanum, Sana ; Heidari, Mohsen ; Raja, Rubesh ; Gupta, Shakti ; Maurya, Mano R ; Grama, Ananth ; Subramaniam, Shankar ; Ramkrishna, Doraiswami</creatorcontrib><description>Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11030874</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adenosine triphosphate ; Analysis ; Arachidonic acid ; Biological effects ; Chemokines ; Coronaviruses ; COVID-19 ; Cybernetics ; Cytokine storm ; Cytokines ; Eicosanoids ; Enzymes ; Gene expression ; Inflammation ; Inflammatory diseases ; Inflammatory response ; Information theory ; Leukotrienes ; Lipids ; Macrophages ; Mathematical models ; Metabolism ; Metabolites ; Monocyte chemoattractant protein 1 ; Optimization ; Parameters ; Physiological aspects ; Prostaglandins ; Signal transduction ; Signaling ; Tumor necrosis factor-TNF ; Variables</subject><ispartof>Processes, 2023-03, Vol.11 (3), p.874</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-7be889f38ea452e01168adc5898349cd8fd012427940fedef37adfd31f902e6a3</citedby><cites>FETCH-LOGICAL-c362t-7be889f38ea452e01168adc5898349cd8fd012427940fedef37adfd31f902e6a3</cites><orcidid>0000-0002-7876-388X ; 0000-0002-0012-2900 ; 0000-0003-2598-1434 ; 0000-0002-3204-0061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Aboulmouna, Lina</creatorcontrib><creatorcontrib>Khanum, Sana</creatorcontrib><creatorcontrib>Heidari, Mohsen</creatorcontrib><creatorcontrib>Raja, Rubesh</creatorcontrib><creatorcontrib>Gupta, Shakti</creatorcontrib><creatorcontrib>Maurya, Mano R</creatorcontrib><creatorcontrib>Grama, Ananth</creatorcontrib><creatorcontrib>Subramaniam, Shankar</creatorcontrib><creatorcontrib>Ramkrishna, Doraiswami</creatorcontrib><title>Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches</title><title>Processes</title><description>Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism.</description><subject>Adenosine triphosphate</subject><subject>Analysis</subject><subject>Arachidonic acid</subject><subject>Biological effects</subject><subject>Chemokines</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cybernetics</subject><subject>Cytokine storm</subject><subject>Cytokines</subject><subject>Eicosanoids</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Inflammation</subject><subject>Inflammatory diseases</subject><subject>Inflammatory response</subject><subject>Information theory</subject><subject>Leukotrienes</subject><subject>Lipids</subject><subject>Macrophages</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Physiological aspects</subject><subject>Prostaglandins</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Tumor necrosis factor-TNF</subject><subject>Variables</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptUU1P3DAQjSoqFVEu_QWWekMK9UeytrmtIqBIbHuh52jWHm9MEzvYgRU_ov-5piABUmcOMxq9N2_0pqq-MHoqhKbf5sQYFVTJ5kN1yDmXtZZMHrzpP1XHOd_SEpoJ1a4Oqz8bWAacYPEGRrKJFkcfdiQ6cu5NzBCit2SDC2zj6PNEfCAbMCnOA-yQdDiO-Yx0j1tMAcsOcpFgwn1Mv0kXp60PaMneLwP5ER9wJFfBxfQkFkN9M2BM_zjreU4RzID5c_XRwZjx-KUeVb8uzm-67_X1z8urbn1dG7HiSy23qJR2QiE0LUfK2EqBNa3SSjTaWOUsZbzhUjfUoUUnJFhnBXOaclyBOKq-Pu8twnf3mJf-Nt6nUCT7QmKy2Mj5K2oHI_a-3L4kMJPPpl_LRmjRNq0uqNP_oEpanIqFAZ0v83eEk2dCsTHnhK6fk58gPfaM9k-P7F8fKf4CDaGQ2w</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Aboulmouna, Lina</creator><creator>Khanum, Sana</creator><creator>Heidari, Mohsen</creator><creator>Raja, Rubesh</creator><creator>Gupta, Shakti</creator><creator>Maurya, Mano R</creator><creator>Grama, Ananth</creator><creator>Subramaniam, Shankar</creator><creator>Ramkrishna, Doraiswami</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7876-388X</orcidid><orcidid>https://orcid.org/0000-0002-0012-2900</orcidid><orcidid>https://orcid.org/0000-0003-2598-1434</orcidid><orcidid>https://orcid.org/0000-0002-3204-0061</orcidid></search><sort><creationdate>20230301</creationdate><title>Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches</title><author>Aboulmouna, Lina ; Khanum, Sana ; Heidari, Mohsen ; Raja, Rubesh ; Gupta, Shakti ; Maurya, Mano R ; Grama, Ananth ; Subramaniam, Shankar ; Ramkrishna, Doraiswami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-7be889f38ea452e01168adc5898349cd8fd012427940fedef37adfd31f902e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenosine triphosphate</topic><topic>Analysis</topic><topic>Arachidonic acid</topic><topic>Biological effects</topic><topic>Chemokines</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cybernetics</topic><topic>Cytokine storm</topic><topic>Cytokines</topic><topic>Eicosanoids</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Inflammation</topic><topic>Inflammatory diseases</topic><topic>Inflammatory response</topic><topic>Information theory</topic><topic>Leukotrienes</topic><topic>Lipids</topic><topic>Macrophages</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Physiological aspects</topic><topic>Prostaglandins</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Tumor necrosis factor-TNF</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aboulmouna, Lina</creatorcontrib><creatorcontrib>Khanum, Sana</creatorcontrib><creatorcontrib>Heidari, Mohsen</creatorcontrib><creatorcontrib>Raja, Rubesh</creatorcontrib><creatorcontrib>Gupta, Shakti</creatorcontrib><creatorcontrib>Maurya, Mano R</creatorcontrib><creatorcontrib>Grama, Ananth</creatorcontrib><creatorcontrib>Subramaniam, Shankar</creatorcontrib><creatorcontrib>Ramkrishna, Doraiswami</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aboulmouna, Lina</au><au>Khanum, Sana</au><au>Heidari, Mohsen</au><au>Raja, Rubesh</au><au>Gupta, Shakti</au><au>Maurya, Mano R</au><au>Grama, Ananth</au><au>Subramaniam, Shankar</au><au>Ramkrishna, Doraiswami</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches</atitle><jtitle>Processes</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>874</spage><pages>874-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11030874</doi><orcidid>https://orcid.org/0000-0002-7876-388X</orcidid><orcidid>https://orcid.org/0000-0002-0012-2900</orcidid><orcidid>https://orcid.org/0000-0003-2598-1434</orcidid><orcidid>https://orcid.org/0000-0002-3204-0061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-03, Vol.11 (3), p.874
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2791710322
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Adenosine triphosphate
Analysis
Arachidonic acid
Biological effects
Chemokines
Coronaviruses
COVID-19
Cybernetics
Cytokine storm
Cytokines
Eicosanoids
Enzymes
Gene expression
Inflammation
Inflammatory diseases
Inflammatory response
Information theory
Leukotrienes
Lipids
Macrophages
Mathematical models
Metabolism
Metabolites
Monocyte chemoattractant protein 1
Optimization
Parameters
Physiological aspects
Prostaglandins
Signal transduction
Signaling
Tumor necrosis factor-TNF
Variables
title Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20of%20Eicosanoid%20Metabolism%20in%20Macrophage%20Cells:%20Cybernetic%20Framework%20Combined%20with%20Novel%20Information-Theoretic%20Approaches&rft.jtitle=Processes&rft.au=Aboulmouna,%20Lina&rft.date=2023-03-01&rft.volume=11&rft.issue=3&rft.spage=874&rft.pages=874-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11030874&rft_dat=%3Cgale_proqu%3EA743935459%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791710322&rft_id=info:pmid/&rft_galeid=A743935459&rfr_iscdi=true