Prediction of Longitudinal Superimposed “Sweet Spot” of Tight Gas Reservoir: A Case Study of Block G, Canada
In this paper, taking Block G in Canada as an example, combined with the data of the working area, the Pearson–MIC comprehensive evaluation method was adopted to optimize the key parameters of productivity. Based on the analytic hierarchy process, the weight of each parameter was calculated, the gra...
Gespeichert in:
Veröffentlicht in: | Processes 2023-03, Vol.11 (3), p.666 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 666 |
container_title | Processes |
container_volume | 11 |
creator | Jia, Yuepeng Huang, Wensong Wang, Ping Su, Penghui Kong, Xiangwen Liu, Li Shan, Yunpeng |
description | In this paper, taking Block G in Canada as an example, combined with the data of the working area, the Pearson–MIC comprehensive evaluation method was adopted to optimize the key parameters of productivity. Based on the analytic hierarchy process, the weight of each parameter was calculated, the grade of evaluation index of the “sweet spot” was divided, the standard of the sweet spot was established, and the distribution of the superimposed sweet spot was finally depicted. The results show that lateral length, number of stages, volume of fluid, and amount of proppant are the key engineering parameters of horizontal well, and lateral length is an independent key engineering parameter. The cumulative gas production in the first two years was normalized on the lateral length to eliminate the engineering influence, and the total organic carbon (TOC) was finally determined as the key geological parameter, whereas porosity and water saturation were the secondary key parameters. The area of Type I sweet spots accounts for 24.2% in the Series Upper and 23.1% in the Series Lower. This study proposed a new sweet spot prediction idea based on the influence of geological factors on productivity, and its results also laid a foundation for the subsequent placement of horizontal wells in Block G. |
doi_str_mv | 10.3390/pr11030666 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791698247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743935152</galeid><sourcerecordid>A743935152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6da41ff3d8e48ffac19ba630112eddb59c9f8e8740498530bb9456b51bc6230a3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBUr34CwLexNZ87GY33mrRKhQUW89LNpnU1HazJlult_4Q_XP9JaZU0JnDDI_3Hsy8JDkjuM-YwFeNJwQzzDk_SDqU0rwncpIf_tuPk9MQ5jiWIKzIeCdpnjxoq1rrauQMGrt6ZtuVtrVcoMmqAW-XjQug0XbzNfkEaNGkce12871jT-3stUUjGdAzBPAfzvprNEBDGQBNost6R7pZOPWGRpcRrqWWJ8mRkYsAp7-zm7zc3U6H973x4-hhOBj3FBWs7XEtU2IM0wWkhTFSEVFJzjAhFLSuMqGEKaDIU5yKImO4qkSa8SojleKUYcm6yfnet_HufQWhLedu5eNZoaS5IFwUNM0jq79nzeQCSlsb13qpYmtYWuVqMDbigzxlgmUko1FwsRco70LwYMomvkj6dUlwuUuh_EuB_QAzAnpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791698247</pqid></control><display><type>article</type><title>Prediction of Longitudinal Superimposed “Sweet Spot” of Tight Gas Reservoir: A Case Study of Block G, Canada</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Jia, Yuepeng ; Huang, Wensong ; Wang, Ping ; Su, Penghui ; Kong, Xiangwen ; Liu, Li ; Shan, Yunpeng</creator><creatorcontrib>Jia, Yuepeng ; Huang, Wensong ; Wang, Ping ; Su, Penghui ; Kong, Xiangwen ; Liu, Li ; Shan, Yunpeng</creatorcontrib><description>In this paper, taking Block G in Canada as an example, combined with the data of the working area, the Pearson–MIC comprehensive evaluation method was adopted to optimize the key parameters of productivity. Based on the analytic hierarchy process, the weight of each parameter was calculated, the grade of evaluation index of the “sweet spot” was divided, the standard of the sweet spot was established, and the distribution of the superimposed sweet spot was finally depicted. The results show that lateral length, number of stages, volume of fluid, and amount of proppant are the key engineering parameters of horizontal well, and lateral length is an independent key engineering parameter. The cumulative gas production in the first two years was normalized on the lateral length to eliminate the engineering influence, and the total organic carbon (TOC) was finally determined as the key geological parameter, whereas porosity and water saturation were the secondary key parameters. The area of Type I sweet spots accounts for 24.2% in the Series Upper and 23.1% in the Series Lower. This study proposed a new sweet spot prediction idea based on the influence of geological factors on productivity, and its results also laid a foundation for the subsequent placement of horizontal wells in Block G.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11030666</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analytic hierarchy process ; Brittleness ; Carbon ; Case studies ; Gamma rays ; Gas production ; Geology ; Horizontal wells ; Hydrocarbons ; Mathematical analysis ; Methods ; Natural gas ; Normal distribution ; Oil shale ; Organic carbon ; Parameters ; Permeability ; Porosity ; Productivity ; Quality ; Sedimentation & deposition ; Total organic carbon ; Variables</subject><ispartof>Processes, 2023-03, Vol.11 (3), p.666</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-6da41ff3d8e48ffac19ba630112eddb59c9f8e8740498530bb9456b51bc6230a3</cites><orcidid>0000-0001-7722-7500 ; 0000-0003-3780-5868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jia, Yuepeng</creatorcontrib><creatorcontrib>Huang, Wensong</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Su, Penghui</creatorcontrib><creatorcontrib>Kong, Xiangwen</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Shan, Yunpeng</creatorcontrib><title>Prediction of Longitudinal Superimposed “Sweet Spot” of Tight Gas Reservoir: A Case Study of Block G, Canada</title><title>Processes</title><description>In this paper, taking Block G in Canada as an example, combined with the data of the working area, the Pearson–MIC comprehensive evaluation method was adopted to optimize the key parameters of productivity. Based on the analytic hierarchy process, the weight of each parameter was calculated, the grade of evaluation index of the “sweet spot” was divided, the standard of the sweet spot was established, and the distribution of the superimposed sweet spot was finally depicted. The results show that lateral length, number of stages, volume of fluid, and amount of proppant are the key engineering parameters of horizontal well, and lateral length is an independent key engineering parameter. The cumulative gas production in the first two years was normalized on the lateral length to eliminate the engineering influence, and the total organic carbon (TOC) was finally determined as the key geological parameter, whereas porosity and water saturation were the secondary key parameters. The area of Type I sweet spots accounts for 24.2% in the Series Upper and 23.1% in the Series Lower. This study proposed a new sweet spot prediction idea based on the influence of geological factors on productivity, and its results also laid a foundation for the subsequent placement of horizontal wells in Block G.</description><subject>Analytic hierarchy process</subject><subject>Brittleness</subject><subject>Carbon</subject><subject>Case studies</subject><subject>Gamma rays</subject><subject>Gas production</subject><subject>Geology</subject><subject>Horizontal wells</subject><subject>Hydrocarbons</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Natural gas</subject><subject>Normal distribution</subject><subject>Oil shale</subject><subject>Organic carbon</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Productivity</subject><subject>Quality</subject><subject>Sedimentation & deposition</subject><subject>Total organic carbon</subject><subject>Variables</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUU1LAzEQXUTBUr34CwLexNZ87GY33mrRKhQUW89LNpnU1HazJlult_4Q_XP9JaZU0JnDDI_3Hsy8JDkjuM-YwFeNJwQzzDk_SDqU0rwncpIf_tuPk9MQ5jiWIKzIeCdpnjxoq1rrauQMGrt6ZtuVtrVcoMmqAW-XjQug0XbzNfkEaNGkce12871jT-3stUUjGdAzBPAfzvprNEBDGQBNost6R7pZOPWGRpcRrqWWJ8mRkYsAp7-zm7zc3U6H973x4-hhOBj3FBWs7XEtU2IM0wWkhTFSEVFJzjAhFLSuMqGEKaDIU5yKImO4qkSa8SojleKUYcm6yfnet_HufQWhLedu5eNZoaS5IFwUNM0jq79nzeQCSlsb13qpYmtYWuVqMDbigzxlgmUko1FwsRco70LwYMomvkj6dUlwuUuh_EuB_QAzAnpc</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Jia, Yuepeng</creator><creator>Huang, Wensong</creator><creator>Wang, Ping</creator><creator>Su, Penghui</creator><creator>Kong, Xiangwen</creator><creator>Liu, Li</creator><creator>Shan, Yunpeng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7722-7500</orcidid><orcidid>https://orcid.org/0000-0003-3780-5868</orcidid></search><sort><creationdate>20230301</creationdate><title>Prediction of Longitudinal Superimposed “Sweet Spot” of Tight Gas Reservoir: A Case Study of Block G, Canada</title><author>Jia, Yuepeng ; Huang, Wensong ; Wang, Ping ; Su, Penghui ; Kong, Xiangwen ; Liu, Li ; Shan, Yunpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6da41ff3d8e48ffac19ba630112eddb59c9f8e8740498530bb9456b51bc6230a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytic hierarchy process</topic><topic>Brittleness</topic><topic>Carbon</topic><topic>Case studies</topic><topic>Gamma rays</topic><topic>Gas production</topic><topic>Geology</topic><topic>Horizontal wells</topic><topic>Hydrocarbons</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Natural gas</topic><topic>Normal distribution</topic><topic>Oil shale</topic><topic>Organic carbon</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Productivity</topic><topic>Quality</topic><topic>Sedimentation & deposition</topic><topic>Total organic carbon</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yuepeng</creatorcontrib><creatorcontrib>Huang, Wensong</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Su, Penghui</creatorcontrib><creatorcontrib>Kong, Xiangwen</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Shan, Yunpeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yuepeng</au><au>Huang, Wensong</au><au>Wang, Ping</au><au>Su, Penghui</au><au>Kong, Xiangwen</au><au>Liu, Li</au><au>Shan, Yunpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Longitudinal Superimposed “Sweet Spot” of Tight Gas Reservoir: A Case Study of Block G, Canada</atitle><jtitle>Processes</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>666</spage><pages>666-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>In this paper, taking Block G in Canada as an example, combined with the data of the working area, the Pearson–MIC comprehensive evaluation method was adopted to optimize the key parameters of productivity. Based on the analytic hierarchy process, the weight of each parameter was calculated, the grade of evaluation index of the “sweet spot” was divided, the standard of the sweet spot was established, and the distribution of the superimposed sweet spot was finally depicted. The results show that lateral length, number of stages, volume of fluid, and amount of proppant are the key engineering parameters of horizontal well, and lateral length is an independent key engineering parameter. The cumulative gas production in the first two years was normalized on the lateral length to eliminate the engineering influence, and the total organic carbon (TOC) was finally determined as the key geological parameter, whereas porosity and water saturation were the secondary key parameters. The area of Type I sweet spots accounts for 24.2% in the Series Upper and 23.1% in the Series Lower. This study proposed a new sweet spot prediction idea based on the influence of geological factors on productivity, and its results also laid a foundation for the subsequent placement of horizontal wells in Block G.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11030666</doi><orcidid>https://orcid.org/0000-0001-7722-7500</orcidid><orcidid>https://orcid.org/0000-0003-3780-5868</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-03, Vol.11 (3), p.666 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2791698247 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library |
subjects | Analytic hierarchy process Brittleness Carbon Case studies Gamma rays Gas production Geology Horizontal wells Hydrocarbons Mathematical analysis Methods Natural gas Normal distribution Oil shale Organic carbon Parameters Permeability Porosity Productivity Quality Sedimentation & deposition Total organic carbon Variables |
title | Prediction of Longitudinal Superimposed “Sweet Spot” of Tight Gas Reservoir: A Case Study of Block G, Canada |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A58%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Longitudinal%20Superimposed%20%E2%80%9CSweet%20Spot%E2%80%9D%20of%20Tight%20Gas%20Reservoir:%20A%20Case%20Study%20of%20Block%20G,%20Canada&rft.jtitle=Processes&rft.au=Jia,%20Yuepeng&rft.date=2023-03-01&rft.volume=11&rft.issue=3&rft.spage=666&rft.pages=666-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11030666&rft_dat=%3Cgale_proqu%3EA743935152%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791698247&rft_id=info:pmid/&rft_galeid=A743935152&rfr_iscdi=true |