A Tiny-Fault Detection Strategy Based on Phase Congruency—An Example of Carbonate Reservoir in Ordos Basin, China
Tiny-fault detection plays a very important role in the research on the tight oil and gas reservoir in well area X in Ordos Basin, China. In this study, the target formation is the Majiagou dolomite reservoir section under the Ordovician salt with low-amplitude structures generally developed. The co...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2023-03, Vol.13 (3), p.306 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 306 |
container_title | Minerals (Basel) |
container_volume | 13 |
creator | Wang, Enli Li, Hailiang He, Run Zhao, Wanjin Li, Lin Xie, Chunhui Yan, Guoliang Chen, Qiyan Yang, Qing |
description | Tiny-fault detection plays a very important role in the research on the tight oil and gas reservoir in well area X in Ordos Basin, China. In this study, the target formation is the Majiagou dolomite reservoir section under the Ordovician salt with low-amplitude structures generally developed. The conventional attributes extracted from migrated seismic data could not achieve ideal results in detecting hidden faults with small displacement due to slight travel time differences and weak amplitude disturbances. To address this challenge, a segment and fusion strategy was adopted to highlight tiny faults in this region. First, the phase congruency analysis method was used to extract the local edges of coherence to locate the faults. Second, in the extraction process, the coherence was divided into segments according to the fault scales, and then enhanced segment by segment and fused. Third, the empirical formula of the new fault indicator was constructed by the phase congruency features, which can be used to accurately characterize tiny faults. This strategy performs well in both model tests and the migrated seismic data. |
doi_str_mv | 10.3390/min13030306 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2791678155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A750412091</galeid><sourcerecordid>A750412091</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-7e13ef858ac373da4711f6809942d4d66d19cd9f138cf4163466072e8841b2843</originalsourceid><addsrcrecordid>eNpNUcFOwzAMjRBITGMnfiASR-hImrRNj6NsgDRpCIbErcpaZ8u0JSNpEb3xEXwhX0KmcZh9sPX0_KxnI3RJyZCxnNxutaGM7DM9Qb2YZElEU_Z-etSfo4H3axIip0wkcQ_5EZ5r00UT2W4afA8NVI22Br82Tjaw7PCd9FDjgDyvQocLa5auBVN1v98_I4PHX3K72wC2ChfSLawJU_gFPLhPqx3WBs9cbf1eRpsbXKy0kRfoTMmNh8F_7aO3yXhePEbT2cNTMZpGklHRRBlQBkokQlYsY7XkGaUqFSTPeVzzOk1rmld1roKTSvFgj6cpyWIQgtNFLDjro6uD7s7ZjxZ8U65t60xYWcZZTtNM0CQJrOGBtZQbKLVRNlivQtaw1ZU1oHTAR1lCOI33d-uj68NA5az3DlS5c3orXVdSUu4_UR59gv0BPw96dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791678155</pqid></control><display><type>article</type><title>A Tiny-Fault Detection Strategy Based on Phase Congruency—An Example of Carbonate Reservoir in Ordos Basin, China</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><creator>Wang, Enli ; Li, Hailiang ; He, Run ; Zhao, Wanjin ; Li, Lin ; Xie, Chunhui ; Yan, Guoliang ; Chen, Qiyan ; Yang, Qing</creator><creatorcontrib>Wang, Enli ; Li, Hailiang ; He, Run ; Zhao, Wanjin ; Li, Lin ; Xie, Chunhui ; Yan, Guoliang ; Chen, Qiyan ; Yang, Qing</creatorcontrib><description>Tiny-fault detection plays a very important role in the research on the tight oil and gas reservoir in well area X in Ordos Basin, China. In this study, the target formation is the Majiagou dolomite reservoir section under the Ordovician salt with low-amplitude structures generally developed. The conventional attributes extracted from migrated seismic data could not achieve ideal results in detecting hidden faults with small displacement due to slight travel time differences and weak amplitude disturbances. To address this challenge, a segment and fusion strategy was adopted to highlight tiny faults in this region. First, the phase congruency analysis method was used to extract the local edges of coherence to locate the faults. Second, in the extraction process, the coherence was divided into segments according to the fault scales, and then enhanced segment by segment and fused. Third, the empirical formula of the new fault indicator was constructed by the phase congruency features, which can be used to accurately characterize tiny faults. This strategy performs well in both model tests and the migrated seismic data.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min13030306</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplitude ; Amplitudes ; Analysis ; Carbonates ; Coherence ; Detection ; Dolomite ; Dolostone ; Empirical analysis ; Fault detection ; Fault lines ; Fault location ; Faults ; Fractured reservoirs ; Geological faults ; Hydrocarbons ; Oil reservoirs ; Ordovician ; Reservoirs ; Segments ; Seismic data ; Travel time</subject><ispartof>Minerals (Basel), 2023-03, Vol.13 (3), p.306</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a318t-7e13ef858ac373da4711f6809942d4d66d19cd9f138cf4163466072e8841b2843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Wang, Enli</creatorcontrib><creatorcontrib>Li, Hailiang</creatorcontrib><creatorcontrib>He, Run</creatorcontrib><creatorcontrib>Zhao, Wanjin</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Xie, Chunhui</creatorcontrib><creatorcontrib>Yan, Guoliang</creatorcontrib><creatorcontrib>Chen, Qiyan</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><title>A Tiny-Fault Detection Strategy Based on Phase Congruency—An Example of Carbonate Reservoir in Ordos Basin, China</title><title>Minerals (Basel)</title><description>Tiny-fault detection plays a very important role in the research on the tight oil and gas reservoir in well area X in Ordos Basin, China. In this study, the target formation is the Majiagou dolomite reservoir section under the Ordovician salt with low-amplitude structures generally developed. The conventional attributes extracted from migrated seismic data could not achieve ideal results in detecting hidden faults with small displacement due to slight travel time differences and weak amplitude disturbances. To address this challenge, a segment and fusion strategy was adopted to highlight tiny faults in this region. First, the phase congruency analysis method was used to extract the local edges of coherence to locate the faults. Second, in the extraction process, the coherence was divided into segments according to the fault scales, and then enhanced segment by segment and fused. Third, the empirical formula of the new fault indicator was constructed by the phase congruency features, which can be used to accurately characterize tiny faults. This strategy performs well in both model tests and the migrated seismic data.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Analysis</subject><subject>Carbonates</subject><subject>Coherence</subject><subject>Detection</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Empirical analysis</subject><subject>Fault detection</subject><subject>Fault lines</subject><subject>Fault location</subject><subject>Faults</subject><subject>Fractured reservoirs</subject><subject>Geological faults</subject><subject>Hydrocarbons</subject><subject>Oil reservoirs</subject><subject>Ordovician</subject><subject>Reservoirs</subject><subject>Segments</subject><subject>Seismic data</subject><subject>Travel time</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUcFOwzAMjRBITGMnfiASR-hImrRNj6NsgDRpCIbErcpaZ8u0JSNpEb3xEXwhX0KmcZh9sPX0_KxnI3RJyZCxnNxutaGM7DM9Qb2YZElEU_Z-etSfo4H3axIip0wkcQ_5EZ5r00UT2W4afA8NVI22Br82Tjaw7PCd9FDjgDyvQocLa5auBVN1v98_I4PHX3K72wC2ChfSLawJU_gFPLhPqx3WBs9cbf1eRpsbXKy0kRfoTMmNh8F_7aO3yXhePEbT2cNTMZpGklHRRBlQBkokQlYsY7XkGaUqFSTPeVzzOk1rmld1roKTSvFgj6cpyWIQgtNFLDjro6uD7s7ZjxZ8U65t60xYWcZZTtNM0CQJrOGBtZQbKLVRNlivQtaw1ZU1oHTAR1lCOI33d-uj68NA5az3DlS5c3orXVdSUu4_UR59gv0BPw96dA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wang, Enli</creator><creator>Li, Hailiang</creator><creator>He, Run</creator><creator>Zhao, Wanjin</creator><creator>Li, Lin</creator><creator>Xie, Chunhui</creator><creator>Yan, Guoliang</creator><creator>Chen, Qiyan</creator><creator>Yang, Qing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20230301</creationdate><title>A Tiny-Fault Detection Strategy Based on Phase Congruency—An Example of Carbonate Reservoir in Ordos Basin, China</title><author>Wang, Enli ; Li, Hailiang ; He, Run ; Zhao, Wanjin ; Li, Lin ; Xie, Chunhui ; Yan, Guoliang ; Chen, Qiyan ; Yang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-7e13ef858ac373da4711f6809942d4d66d19cd9f138cf4163466072e8841b2843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Analysis</topic><topic>Carbonates</topic><topic>Coherence</topic><topic>Detection</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Empirical analysis</topic><topic>Fault detection</topic><topic>Fault lines</topic><topic>Fault location</topic><topic>Faults</topic><topic>Fractured reservoirs</topic><topic>Geological faults</topic><topic>Hydrocarbons</topic><topic>Oil reservoirs</topic><topic>Ordovician</topic><topic>Reservoirs</topic><topic>Segments</topic><topic>Seismic data</topic><topic>Travel time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Enli</creatorcontrib><creatorcontrib>Li, Hailiang</creatorcontrib><creatorcontrib>He, Run</creatorcontrib><creatorcontrib>Zhao, Wanjin</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Xie, Chunhui</creatorcontrib><creatorcontrib>Yan, Guoliang</creatorcontrib><creatorcontrib>Chen, Qiyan</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Enli</au><au>Li, Hailiang</au><au>He, Run</au><au>Zhao, Wanjin</au><au>Li, Lin</au><au>Xie, Chunhui</au><au>Yan, Guoliang</au><au>Chen, Qiyan</au><au>Yang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tiny-Fault Detection Strategy Based on Phase Congruency—An Example of Carbonate Reservoir in Ordos Basin, China</atitle><jtitle>Minerals (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>306</spage><pages>306-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>Tiny-fault detection plays a very important role in the research on the tight oil and gas reservoir in well area X in Ordos Basin, China. In this study, the target formation is the Majiagou dolomite reservoir section under the Ordovician salt with low-amplitude structures generally developed. The conventional attributes extracted from migrated seismic data could not achieve ideal results in detecting hidden faults with small displacement due to slight travel time differences and weak amplitude disturbances. To address this challenge, a segment and fusion strategy was adopted to highlight tiny faults in this region. First, the phase congruency analysis method was used to extract the local edges of coherence to locate the faults. Second, in the extraction process, the coherence was divided into segments according to the fault scales, and then enhanced segment by segment and fused. Third, the empirical formula of the new fault indicator was constructed by the phase congruency features, which can be used to accurately characterize tiny faults. This strategy performs well in both model tests and the migrated seismic data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min13030306</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2023-03, Vol.13 (3), p.306 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_proquest_journals_2791678155 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection |
subjects | Amplitude Amplitudes Analysis Carbonates Coherence Detection Dolomite Dolostone Empirical analysis Fault detection Fault lines Fault location Faults Fractured reservoirs Geological faults Hydrocarbons Oil reservoirs Ordovician Reservoirs Segments Seismic data Travel time |
title | A Tiny-Fault Detection Strategy Based on Phase Congruency—An Example of Carbonate Reservoir in Ordos Basin, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tiny-Fault%20Detection%20Strategy%20Based%20on%20Phase%20Congruency%E2%80%94An%20Example%20of%20Carbonate%20Reservoir%20in%20Ordos%20Basin,%20China&rft.jtitle=Minerals%20(Basel)&rft.au=Wang,%20Enli&rft.date=2023-03-01&rft.volume=13&rft.issue=3&rft.spage=306&rft.pages=306-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min13030306&rft_dat=%3Cgale_proqu%3EA750412091%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791678155&rft_id=info:pmid/&rft_galeid=A750412091&rfr_iscdi=true |